Study of two-body doubly charmful baryonic B decays with SU(3) flavor symmetry

被引:0
|
作者
Yu-Kuo Hsiao
机构
[1] Shanxi Normal University,School of Physics and Information Engineering
关键词
Bottom Quarks; Flavour Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
Within the framework of SU(3) flavor symmetry, we investigate two-body doubly charmful baryonic B→BcB¯c′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ B\to {\textbf{B}}_c{\overline{\textbf{B}}}_c^{\prime } $$\end{document} decays, where BcB¯c′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textbf{B}}_c{\overline{\textbf{B}}}_c^{\prime } $$\end{document} represents the anti-triplet charmed dibaryon. We determine the SU(3)f amplitudes and calculate BB−→Ξc0Ξ¯c−=3.4−0.9+1.0×10−5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B}\left({B}^{-}\to {\Xi}_c^0{\overline{\Xi}}_c^{-}\right)=\left({3.4}_{-0.9}^{+1.0}\right)\times {10}^{-5} $$\end{document} and BB¯s0→Λc+Ξ¯c−=3.9−1.0+1.2×10−5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B}\left({\overline{B}}_s^0\to {\Lambda}_c^{+}{\overline{\Xi}}_c^{-}\right)=\left({3.9}_{-1.0}^{+1.2}\right)\times {10}^{-5} $$\end{document} induced by the single W-emission configuration. We find that the W-exchange amplitude, previously neglected in studies, needs to be taken into account. It can cause a destructive interfering effect with the W-emission amplitude, alleviating the significant discrepancy between the theoretical estimation and experimental data for BB¯0→Λc+Λ¯c−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B}\left({\overline{B}}^0\to {\Lambda}_c^{+}{\overline{\Lambda}}_c^{-}\right) $$\end{document}. To test other interfering decay channels, we calculate BB¯s0→Ξc0+Ξ¯c0+=3.0−1.1+1.4×10−4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B}\left({\overline{B}}_s^0\to {\Xi}_c^{0\left(+\right)}{\overline{\Xi}}_c^{0\left(+\right)}\right)=\left({3.0}_{-1.1}^{+1.4}\right)\times {10}^{-4} $$\end{document} and BB¯0→Ξc0Ξ¯c0=1.5−0.6+0.7×10−5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B}\left({\overline{B}}^0\to {\Xi}_c^0{\overline{\Xi}}_c^0\right)=\left({1.5}_{-0.6}^{+0.7}\right)\times {10}^{-5} $$\end{document}. We estimate non-zero branching fractions for the pure W-exchange decay channels, specifically BB¯s0→Λc+Λ¯c−=8.1−1.5+1.7×10−5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B}\left({\overline{B}}_s^0\to {\Lambda}_c^{+}{\overline{\Lambda}}_c^{-}\right)=\left({8.1}_{-1.5}^{+1.7}\right)\times {10}^{-5} $$\end{document} and BB¯0→Ξc+Ξ¯c−=3.0±0.6×10−6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B}\left({\overline{B}}^0\to {\Xi}_c^{+}{\overline{\Xi}}_c^{-}\right)=\left(3.0\pm 0.6\right)\times {10}^{-6} $$\end{document}. Additionally, we predict BBc+→Ξc+Ξ¯c0=2.8−0.7+0.9×10−4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B}\left({B}_c^{+}\to {\Xi}_c^{+}{\overline{\Xi}}_c^0\right)=\left({2.8}_{-0.7}^{+0.9}\right)\times {10}^{-4} $$\end{document} and BBc+→Λc+Ξ¯c0=1.6−0.4+0.5×10−5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B}\left({B}_c^{+}\to {\Lambda}_c^{+}{\overline{\Xi}}_c^0\right)=\left({1.6}_{-0.4}^{+0.5}\right)\times {10}^{-5} $$\end{document}, which are accessible to experimental facilities such as LHCb.
引用
收藏
相关论文
共 50 条
  • [11] A Diagrammatic Analysis of Two-Body Charmed Baryon Decays with Flavor Symmetry
    H.J. Zhao
    Yan-Li Wang
    Y.K. Hsiao
    Yao Yu
    Journal of High Energy Physics, 2020
  • [12] A Diagrammatic Analysis of Two-Body Charmed Baryon Decays with Flavor Symmetry
    Zhao, H. J.
    Wang, Yan-Li
    Hsiao, Y. K.
    Yu, Yao
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [13] Predictive CP violating relations for charmless two-body decays of beauty baryons Ξb-,0 and Λb0 with flavor SU(3) symmetry
    He, Xiao-Gang
    Li, Guan-Nan
    PHYSICS LETTERS B, 2015, 750 : 82 - 88
  • [14] Testing the W-exchange mechanism with two-body baryonic B decays
    Hsiao, Y. K.
    Tsai, Shang-Yuu
    Lih, Chong-Chung
    Rodrigues, Eduardo
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
  • [15] Charmless two-body baryonic B decays -: art. no. 074001
    Chua, CK
    PHYSICAL REVIEW D, 2003, 68 (07)
  • [16] Four-body semileptonic decays B → D*Pℓ+νℓ with SU(3) flavor symmetry
    Wan, Meng-Yuan
    Xu, Yuan-Guo
    Jia, Qi-Lin
    Liu, Yue-Xin
    Zhang, Yi-Jie
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2025, 52 (01)
  • [17] Three-body charmed baryon decays with SU(3) flavor symmetry
    Geng, C. Q.
    Hsiao, Y. K.
    Liu, Chia-Wei
    Tsai, Tien-Hsueh
    PHYSICAL REVIEW D, 2019, 99 (07)
  • [18] Global analysis of two-body D → VP decays within the framework of flavor symmetry
    Cheng, Hai-Yang
    Chiang, Cheng-Wei
    Kuo, An-Li
    PHYSICAL REVIEW D, 2016, 93 (11)
  • [19] Flavor SU(3) and Λb decays
    Gronau, Michael
    Rosner, Jonathan L.
    PHYSICAL REVIEW D, 2014, 89 (03):
  • [20] Nonleptonic two-body decays of D mesons in broken SU(3)
    Hinchliffe, I
    Kaeding, TA
    PHYSICAL REVIEW D, 1996, 54 (01): : 914 - 928