Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy

被引:0
|
作者
A. Raman
S. Trigueros
A. Cartagena
A. P. Z. Stevenson
M. Susilo
E. Nauman
S. Antoranz Contera
机构
[1] School of Mechanical Engineering,Department of Physics and Institute of Nanoscience for Medicine
[2] Purdue University,undefined
[3] West Lafayette,undefined
[4] Oxford Martin School,undefined
[5] University of Oxford,undefined
[6] Birck Nanotechnology Center,undefined
[7] Purdue University,undefined
[8] West Lafayette,undefined
[9] Weldon School of Biomedical Engineering,undefined
[10] West Lafayette,undefined
来源
Nature Nanotechnology | 2011年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The nanomechanical properties of living cells, such as their surface elastic response and adhesion, have important roles in cellular processes such as morphogenesis1, mechano-transduction2, focal adhesion3, motility4,5, metastasis6 and drug delivery7,8,9,10. Techniques based on quasi-static atomic force microscopy techniques11,12,13,14,15,16,17 can map these properties, but they lack the spatial and temporal resolution that is needed to observe many of the relevant details. Here, we present a dynamic atomic force microscopy18,19,20,21,22,23,24,25,26,27,28 method to map quantitatively the nanomechanical properties of live cells with a throughput (measured in pixels/minute) that is ∼10–1,000 times higher than that achieved with quasi-static atomic force microscopy techniques. The local properties of a cell are derived from the 0th, 1st and 2nd harmonic components of the Fourier spectrum of the AFM cantilevers interacting with the cell surface. Local stiffness, stiffness gradient and the viscoelastic dissipation of live Escherichia coli bacteria, rat fibroblasts and human red blood cells were all mapped in buffer solutions. Our method is compatible with commercial atomic force microscopes and could be used to analyse mechanical changes in tumours, cells and biofilm formation with sub-10 nm detail.
引用
收藏
页码:809 / 814
页数:5
相关论文
共 50 条
  • [21] Second harmonic atomic force microscopy imaging of live and fixed mammalian cells
    Dulebo, Alexander
    Preiner, Johannes
    Kienberger, Ferry
    Kada, Gerald
    Rankl, Christian
    Chtcheglova, Lilia
    Lamprecht, Constanze
    Kaftan, David
    Hinterdorfer, Peter
    ULTRAMICROSCOPY, 2009, 109 (08) : 1056 - 1060
  • [22] Atomic force microscopy indentation for nanomechanical characterization of live pathological cardiovascular/heart tissue and cells
    Benech, Juan C.
    Romanelli, Gerardo
    MICRON, 2022, 158
  • [23] QUANTITATIVE NANOMECHANICAL MAPPING OF MARINE DIATOM IN SEAWATER USING PEAK FORCE TAPPING ATOMIC FORCE MICROSCOPY
    Pletikapic, Galja
    Berquand, Alexandre
    Misic Radic, Tea
    Svetlicic, Vesna
    JOURNAL OF PHYCOLOGY, 2012, 48 (01) : 174 - 185
  • [24] Quantitative Nanomechanical Mapping of Polyolefin Elastomer at Nanoscale with Atomic Force Microscopy
    Shuting Zhang
    Yihui Weng
    Chunhua Ma
    Nanoscale Research Letters, 16
  • [25] Quantitative Nanomechanical Mapping of Polyolefin Elastomer at Nanoscale with Atomic Force Microscopy
    Zhang, Shuting
    Weng, Yihui
    Ma, Chunhua
    NANOSCALE RESEARCH LETTERS, 2021, 16 (01):
  • [26] Imaging viscoelastic properties of live cancer cells with atomic force microscopy
    Schierbaum, N.
    Rheinlaender, J.
    Hecht, F.
    Goldmann, W. H.
    Fabry, B.
    Schaeffer, T. E.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S82 - S82
  • [27] Utilizing intentional internal resonance to achieve multi-harmonic atomic force microscopy (vol 27, 125501, 2016)
    Jeong, Bongwon
    Pettit, Chris
    Dharmasena, Sajith
    Keum, Hohyun
    Lee, Joohyung
    Kim, Jungkyu
    Kim, Seok
    McFarland, D. Michael
    Bergman, Lawrence A.
    Vakakis, Alexander F.
    Cho, Hanna
    NANOTECHNOLOGY, 2016, 27 (19)
  • [28] Evaluation of Nanomechanical Properties of Tomato Root by Atomic Force Microscopy
    Nicolas-Alvarez, D. E.
    Andraca-Adame, J. A.
    Chanona-Perez, J. J.
    Mendez-Mendez, J., V
    Cardenas-Perez, S.
    Rodriguez-Pulido, A.
    MICROSCOPY AND MICROANALYSIS, 2019, 25 (04) : 989 - 997
  • [29] Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae
    Arfsten, Judith
    Leupold, Stefan
    Bradtmoeller, Christian
    Kampen, Ingo
    Kwade, Arno
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2010, 79 (01) : 284 - 290
  • [30] Nanomechanical Mapping of Glass Fiber Reinforced Polymer Composites Using Atomic Force Acoustic Microscopy
    Zhou, Xilong
    Fu, Ji
    Li, Yingwei
    Li, Faxin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (02)