Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy

被引:0
|
作者
A. Raman
S. Trigueros
A. Cartagena
A. P. Z. Stevenson
M. Susilo
E. Nauman
S. Antoranz Contera
机构
[1] School of Mechanical Engineering,Department of Physics and Institute of Nanoscience for Medicine
[2] Purdue University,undefined
[3] West Lafayette,undefined
[4] Oxford Martin School,undefined
[5] University of Oxford,undefined
[6] Birck Nanotechnology Center,undefined
[7] Purdue University,undefined
[8] West Lafayette,undefined
[9] Weldon School of Biomedical Engineering,undefined
[10] West Lafayette,undefined
来源
Nature Nanotechnology | 2011年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The nanomechanical properties of living cells, such as their surface elastic response and adhesion, have important roles in cellular processes such as morphogenesis1, mechano-transduction2, focal adhesion3, motility4,5, metastasis6 and drug delivery7,8,9,10. Techniques based on quasi-static atomic force microscopy techniques11,12,13,14,15,16,17 can map these properties, but they lack the spatial and temporal resolution that is needed to observe many of the relevant details. Here, we present a dynamic atomic force microscopy18,19,20,21,22,23,24,25,26,27,28 method to map quantitatively the nanomechanical properties of live cells with a throughput (measured in pixels/minute) that is ∼10–1,000 times higher than that achieved with quasi-static atomic force microscopy techniques. The local properties of a cell are derived from the 0th, 1st and 2nd harmonic components of the Fourier spectrum of the AFM cantilevers interacting with the cell surface. Local stiffness, stiffness gradient and the viscoelastic dissipation of live Escherichia coli bacteria, rat fibroblasts and human red blood cells were all mapped in buffer solutions. Our method is compatible with commercial atomic force microscopes and could be used to analyse mechanical changes in tumours, cells and biofilm formation with sub-10 nm detail.
引用
收藏
页码:809 / 814
页数:5
相关论文
共 50 条
  • [1] Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy
    Raman, A.
    Trigueros, S.
    Cartagena, A.
    Stevenson, A. P. Z.
    Susilo, M.
    Nauman, E.
    Contera, S. Antoranz
    NATURE NANOTECHNOLOGY, 2011, 6 (12) : 809 - 814
  • [2] Nanomechanical mapping in air or vacuum using multi-harmonic signals in tapping mode atomic force microscopy
    Huda Shaik, Nurul
    Reifenberger, Ronald G.
    Raman, Arvind
    NANOTECHNOLOGY, 2020, 31 (45)
  • [3] Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy
    Yuri M. Efremov
    Alexander X. Cartagena-Rivera
    Ahmad I. M. Athamneh
    Daniel M. Suter
    Arvind Raman
    Nature Protocols, 2018, 13 : 2200 - 2216
  • [4] Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy
    Efremov, Yuri M.
    Cartagena-Rivera, Alexander X.
    Athamneh, Ahmad I. M.
    Suter, Daniel M.
    Raman, Arvind
    NATURE PROTOCOLS, 2018, 13 (10) : 2200 - 2216
  • [5] Quantitative mapping of local mechanical properties of living cells at near-physiological conditions using multi-harmonic atomic force microscopy
    Cartagena, Alexander
    Wang, Wen-Horng
    Geahlen, Robert L.
    Raman, Arvind
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE, PTS A AND B, 2012, : 523 - 524
  • [6] Mapping in vitro local material properties of intact and disrupted virions at high resolution using multi-harmonic atomic force microscopy
    Cartagena, Alexander
    Hernando-Perez, Mercedes
    Carrascosa, Jose L.
    de Pablo, Pedro J.
    Raman, Arvind
    NANOSCALE, 2013, 5 (11) : 4729 - 4736
  • [7] Sensitivity of viscoelastic characterization in multi-harmonic atomic force microscopy
    Chandrashekar, Abhilash
    Givois, Arthur
    Belardinelli, Pierpaolo
    Penning, Casper L.
    Aragon, Alejandro M.
    Staufer, Urs
    Alijani, Farbod
    SOFT MATTER, 2022, 18 (46) : 8748 - 8755
  • [8] Fast, multi-frequency and quantitative nanomechanical mapping of live cells using the atomic force microscope
    Alexander X. Cartagena-Rivera
    Wen-Horng Wang
    Robert L. Geahlen
    Arvind Raman
    Scientific Reports, 5
  • [9] Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope
    Cartagena-Rivera, Alexander X.
    Wang, Wen-Horng
    Geahlen, Robert L.
    Raman, Arvind
    SCIENTIFIC REPORTS, 2015, 5
  • [10] Binary coded cantilevers for enhancing multi-harmonic atomic force microscopy
    Hou, Yaoping
    Ma, Chengfu
    Wang, Wenting
    Chen, Yuhang
    SENSORS AND ACTUATORS A-PHYSICAL, 2019, 300