Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI

被引:0
|
作者
Burak Kocak
Emine Sebnem Durmaz
Pinar Kadioglu
Ozge Polat Korkmaz
Nil Comunoglu
Necmettin Tanriover
Naci Kocer
Civan Islak
Osman Kizilkilic
机构
[1] Istanbul Training and Research Hospital,Department of Radiology
[2] Istanbul University-Cerrahpasa,Department of Radiology, Cerrahpasa Medical Faculty
[3] Istanbul University-Cerrahpasa,Department of Endocrinology and Metabolism, Cerrahpasa Medical Faculty
[4] Istanbul University-Cerrahpasa,Department of Pathology, Cerrahpasa Medical Faculty
[5] Istanbul University-Cerrahpasa,Department of Neurosurgery, Cerrahpasa Medical Faculty
来源
European Radiology | 2019年 / 29卷
关键词
Acromegaly; Growth hormone-secreting pituitary adenoma; Machine learning; Magnetic resonance imaging; Somatostatin;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2731 / 2739
页数:8
相关论文
共 49 条
  • [21] Quantitative MR texture analysis for the differentiation of uterine smooth muscle tumors with high signal intensity on T2-weighted imaging
    Kumagai, Kazuki
    Yagi, Takuya
    Yamazaki, Motohiko
    Tasaki, Akiko
    Asatani, Mina
    Ishikawa, Hiroyuki
    MEDICINE, 2023, 102 (31) : E34452
  • [22] T2-weighted imaging-based radiomic-clinical machine learning model for predicting the differentiation of colorectal adenocarcinoma
    Zheng, Hui-Da
    Huang, Qiao-Yi
    Huang, Qi-Ming
    Ke, Xiao-Ting
    Ye, Kai
    Lin, Shu
    Xu, Jian-Hua
    WORLD JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2024, 16 (03) : 819 - 832
  • [23] Deep learning-based high-accuracy detection for lumbar and cervical degenerative disease on T2-weighted MR images
    Yi, Wei
    Zhao, Jingwei
    Tang, Wen
    Yin, Hongkun
    Yu, Lifeng
    Wang, Yaohui
    Tian, Wei
    EUROPEAN SPINE JOURNAL, 2023, 32 (11) : 3807 - 3814
  • [24] Deep learning-based high-accuracy detection for lumbar and cervical degenerative disease on T2-weighted MR images
    Wei Yi
    Jingwei Zhao
    Wen Tang
    Hongkun Yin
    Lifeng Yu
    Yaohui Wang
    Wei Tian
    European Spine Journal, 2023, 32 : 3807 - 3814
  • [25] Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas
    Deniz Alis
    Omer Bagcilar
    Yeseren Deniz Senli
    Mert Yergin
    Cihan Isler
    Naci Kocer
    Civan Islak
    Osman Kizilkilic
    Japanese Journal of Radiology, 2020, 38 : 135 - 143
  • [26] Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas
    Alis, Deniz
    Bagcilar, Omer
    Senli, Yeseren Deniz
    Yergin, Mert
    Isler, Cihan
    Kocer, Naci
    Islak, Civan
    Kizilkilic, Osman
    JAPANESE JOURNAL OF RADIOLOGY, 2020, 38 (02) : 135 - 143
  • [27] Deep learning-based segmentation of kidneys and renal cysts on T2-weighted MRI from patients with autosomal dominant polycystic kidney disease
    Sore, Remi
    Cathier, Pascal
    Vlachomitrou, Anna Sesilia
    Bailleux, Jerome
    Arnaud, Karine
    Juillard, Laurent
    Lemoine, Sandrine
    Rouviere, Olivier
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [28] Deep learning-based differentiation of peripheral high-flow and low-flow vascular malformations in T2-weighted short tau inversion recovery MRI
    Hammer, Simone
    Nunes, Danilo Weber
    Hammer, Michael
    Zeman, Florian
    Akers, Michael
    Goetza, Andrea
    Balla, Annika
    Doppler, Michael Christian
    Fellner, Claudia
    da Silvaa, Natascha Platz Batista
    Thurn, Sylvia
    Verloh, Niklas
    Stroszczynski, Christian
    Wohlgemuth, Walter Alexander
    Palm, Christoph
    Uller, Wibke
    CLINICAL HEMORHEOLOGY AND MICROCIRCULATION, 2024, 87 (02) : 221 - 235
  • [29] Performance of Machine Learning and Texture Analysis for Predicting Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer with 3T MRI
    Bellini, Davide
    Carbone, Iacopo
    Rengo, Marco
    Vicini, Simone
    Panvini, Nicola
    Caruso, Damiano
    Iannicelli, Elsa
    Tombolini, Vincenzo
    Laghi, Andrea
    TOMOGRAPHY, 2022, 8 (04) : 2059 - 2072
  • [30] Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images
    Lee, Yong Dae
    Kim, Hyug-Gi
    Seo, Miri
    Moon, Sung Kyoung
    Park, Seong Jin
    You, Myung-Won
    INTERNATIONAL JOURNAL OF COLORECTAL DISEASE, 2024, 39 (01)