Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI

被引:0
|
作者
Burak Kocak
Emine Sebnem Durmaz
Pinar Kadioglu
Ozge Polat Korkmaz
Nil Comunoglu
Necmettin Tanriover
Naci Kocer
Civan Islak
Osman Kizilkilic
机构
[1] Istanbul Training and Research Hospital,Department of Radiology
[2] Istanbul University-Cerrahpasa,Department of Radiology, Cerrahpasa Medical Faculty
[3] Istanbul University-Cerrahpasa,Department of Endocrinology and Metabolism, Cerrahpasa Medical Faculty
[4] Istanbul University-Cerrahpasa,Department of Pathology, Cerrahpasa Medical Faculty
[5] Istanbul University-Cerrahpasa,Department of Neurosurgery, Cerrahpasa Medical Faculty
来源
European Radiology | 2019年 / 29卷
关键词
Acromegaly; Growth hormone-secreting pituitary adenoma; Machine learning; Magnetic resonance imaging; Somatostatin;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2731 / 2739
页数:8
相关论文
共 49 条
  • [1] Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI
    Kocak, Burak
    Durmaz, Emine Sebnem
    Kadioglu, Pinar
    Korkmaz, Ozge Polat
    Comunoglu, Nil
    Tanriover, Necmettin
    Kocer, Naci
    Islak, Civan
    Kizilkilic, Osman
    EUROPEAN RADIOLOGY, 2019, 29 (06) : 2731 - 2739
  • [2] Advanced T2-Weighted MRI Analysis Predicts Response to Somatostatin Analogues in Patients with Acromegaly
    Heck, Ansgar
    Emblem, Kyrre E.
    Bollerslev, Jens
    Ringstad, Geir
    ENDOCRINE REVIEWS, 2014, 35 (03)
  • [3] Quantitative analyses of T2-weighted MRI as a potential marker for response to somatostatin analogs in newly diagnosed acromegaly
    Ansgar Heck
    Kyrre E. Emblem
    Olivera Casar-Borota
    Jens Bollerslev
    Geir Ringstad
    Endocrine, 2016, 52 : 333 - 343
  • [4] Quantitative analyses of T2-weighted MRI as a potential marker for response to somatostatin analogs in newly diagnosed acromegaly
    Heck, Ansgar
    Emblem, Kyrre E.
    Casar-Borota, Olivera
    Bollerslev, Jens
    Ringstad, Geir
    ENDOCRINE, 2016, 52 (02) : 333 - 343
  • [5] Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI
    Amalya Zeynalova
    Burak Kocak
    Emine Sebnem Durmaz
    Nil Comunoglu
    Kerem Ozcan
    Gamze Ozcan
    Okan Turk
    Necmettin Tanriover
    Naci Kocer
    Osman Kizilkilic
    Civan Islak
    Neuroradiology, 2019, 61 : 767 - 774
  • [6] Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI
    Zeynalova, Amalya
    Kocak, Burak
    Durmaz, Emine Sebnem
    Comunoglu, Nil
    Ozcan, Kerem
    Ozcan, Gamze
    Turk, Okan
    Tanriover, Necmettin
    Kocer, Naci
    Kizilkilic, Osman
    Islak, Civan
    NEURORADIOLOGY, 2019, 61 (07) : 767 - 774
  • [7] Predictive value of machine learning-based T2-weighted MRI radiomics in the diagnosis of polycystic ovary syndrome
    Rona, Gunay
    Fistikcioglu, Neriman
    Serel, Tekin Ahmet
    Arifoglu, Meral
    Eser, Mehmet Bilgin
    Ozcelik, Serhat
    Aydin, Kadriye
    NORTHERN CLINICS OF ISTANBUL, 2025, 12 (01) : 69 - 75
  • [8] Radiogenomics in Clear Cell Renal Cell Carcinoma: Machine Learning-Based High-Dimensional Quantitative CT Texture Analysis in Predicting PBRM1 Mutation Status
    Kocak, Burak
    Durmaz, Emine Sebnem
    Ates, Ece
    Ulusan, Melis Baykara
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 212 (03) : W55 - W63
  • [9] Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas
    Kocak, Burak
    Ates, Ece
    Durmaz, Emine Sebnem
    Ulusan, Melis Baykara
    Kilickesmez, Ozgur
    EUROPEAN RADIOLOGY, 2019, 29 (09) : 4765 - 4775
  • [10] Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality
    Lee, Kang-Lung
    Kessler, Dimitri A.
    Dezonie, Simon
    Chishaya, Wellington
    Shepherd, Christopher
    Carmo, Bruno
    Graves, Martin J.
    Barrett, Tristan
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 166