Time Periodic Traveling Curved Fronts in the Periodic Lotka–Volterra Competition–Diffusion System

被引:1
|
作者
Xiong-Xiong Bao
Wan-Tong Li
Zhi-Cheng Wang
机构
[1] Lanzhou University,School of Mathematics and Statistics
关键词
Periodic Lotka–Volterra competition-diffusion system; Asymptotic behaviors; Time periodic traveling curved fronts; Existence; Stability; 35K57; 35C07; 35B10; 35K40; 35B35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with time periodic traveling curved fronts for periodic Lotka–Volterra competition system with diffusion in two dimensional spatial space ∂u1∂t=Δu1+u1(x,y,t)r1(t)-a1(t)u1(x,y,t)-b1(t)u2(x,y,t),∂u2∂t=dΔu2+u2(x,y,t)r2(t)-a2(t)u1(x,y,t)-b2(t)u2(x,y,t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} \dfrac{\partial u_{1}}{\partial t}=\Delta u_{1} +u_{1}(x,y,t)\left( r_{1}(t)-a_{1}(t)u_{1}(x,y,t)-b_{1}(t)u_{2}(x,y,t)\right) ,\\ \dfrac{\partial u_{2}}{\partial t}=d\Delta u_{2} +u_{2}(x,y,t)\left( r_{2}(t)-a_{2}(t)u_{1}(x,y,t)-b_{2}(t)u_{2}(x,y,t)\right) , \end{array}\right. } \end{aligned}$$\end{document}where Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} denotes ∂2∂x2+∂2∂y2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\partial ^{2}}{\partial x^{2} }+ \frac{\partial ^{2}}{\partial y^{2} }$$\end{document}, x,y∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in {\mathbb {R}}$$\end{document} and d>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d>0$$\end{document} is a constant, the functions ri(t),ai(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_i(t),a_i(t)$$\end{document} and bi(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_i(t)$$\end{document} are T-periodic and Hölder continuous. Under suitable assumptions that the corresponding kinetic system admits two stable periodic solutions (p(t), 0) and (0, q(t)), the existence, uniqueness and stability of one-dimensional traveling wave solution Φ1(x+ct,t),Φ2(x+ct,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \Phi _{1}(x+ct,t),\Phi _{2}(x+ct,t)\right) $$\end{document} connecting two periodic solutions (p(t), 0) and (0, q(t)) have been established by Bao and Wang ( J Differ Equ 255:2402–2435, 2013) recently. In this paper we continue to investigate two-dimensional traveling wave solutions of the above system under the same assumptions. First, we establish the asymptotic behaviors of one-dimensional traveling wave solutions of the system at infinity. Using these asymptotic behaviors, we then construct appropriate super- and subsolutions and prove the existence and non-existence of two-dimensional time periodic traveling curved fronts. Finally, we show that the time periodic traveling curved front is asymptotically stable.
引用
收藏
页码:981 / 1016
页数:35
相关论文
共 50 条
  • [41] Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats
    Bao, Xiongxiong
    Li, Wan-Tong
    Shen, Wenxian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (12) : 8590 - 8637
  • [42] Persistence and Periodic Orbits for Competivive Lotka-Volterra Diffusion System
    宋新宇
    信阳师范学院学报(自然科学版), 1997, (04) : 4 - 9+83
  • [43] Propagation Dynamics of Bistable Traveling Wave to a Time-Periodic Lotka-Volterra Competition Model: Effect of Seasonality
    Manjun Ma
    Jiajun Yue
    Zhe Huang
    Chunhua Ou
    Journal of Dynamics and Differential Equations, 2023, 35 : 1745 - 1767
  • [44] Propagation Dynamics of Bistable Traveling Wave to a Time-Periodic Lotka-Volterra Competition Model: Effect of Seasonality
    Ma, Manjun
    Yue, Jiajun
    Huang, Zhe
    Ou, Chunhua
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (02) : 1745 - 1767
  • [45] Traveling wave for a time-periodic Lotka-Volterra model with bistable nonlinearity
    Jia-jun Yue
    Man-jun Ma
    Chun-hua Ou
    Applied Mathematics-A Journal of Chinese Universities, 2022, 37 : 396 - 403
  • [46] Propagation phenomena for a bistable Lotka–Volterra competition system with advection in a periodic habitat
    Li-Jun Du
    Wan-Tong Li
    Shi-Liang Wu
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [47] Traveling wave for a time-periodic Lotka-Volterra model with bistable nonlinearity
    YUE Jia-jun
    MA Man-jun
    OU Chun-hua
    Applied Mathematics:A Journal of Chinese Universities, 2022, 37 (03) : 396 - 403
  • [48] Traveling wave for a time-periodic Lotka-Volterra model with bistable nonlinearity
    Yue Jia-jun
    Ma Man-jun
    Ou Chun-hua
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2022, 37 (03) : 396 - 403
  • [49] Almost periodic solutions of a discrete Lotka-Volterra competition system with delays
    Li, Zhong
    Chen, Fengde
    He, Mengxin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) : 2344 - 2355
  • [50] Stability and bifurcation periodic solutions in a Lotka–Volterra competition system with multiple delays
    Jia-Fang Zhang
    Nonlinear Dynamics, 2012, 70 : 849 - 860