Efficient algorithms for computing one or two discrete centers hitting a set of line segments

被引:0
|
作者
Xiaozhou He
Zhihui Liu
Bing Su
Yinfeng Xu
Feifeng Zheng
Binhai Zhu
机构
[1] Sichuan University,Business School
[2] Shandong Technology and Business University,School of Computer Science and Technology
[3] Xi’an Technological University,School of Economics and Management
[4] State Key Lab for Manufacturing Systems Engineering,Glorious Sun School of Business and Management
[5] Donghua University,Gianforte School of Computing
[6] Montana State University,undefined
来源
关键词
One or two discrete centers problem; Hit line segments; Computational geometry;
D O I
暂无
中图分类号
学科分类号
摘要
Given the scheduling model of bike-sharing, we consider the problem of hitting a set of n axis-parallel line segments in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} by a square or an ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty $$\end{document}-circle (and two squares, or two ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty $$\end{document}-circles) whose center(s) must lie on some line segment(s) such that the (maximum) edge length of the square(s) is minimized. Under a different tree model, we consider (virtual) hitting circles whose centers must lie on some tree edges with similar minmax-objectives (with the distance between a center to a target segment being the shortest path length between them). To be more specific, we consider the cases when one needs to compute one (and two) centers on some edge(s) of a tree with m edges, where n target segments must be hit, and the objective is to minimize the maximum path length from the target segments to the nearer center(s). We give three linear-time algorithms and an O(n2logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2\log n)$$\end{document} algorithm for the four problems in consideration.
引用
收藏
页码:1408 / 1423
页数:15
相关论文
共 50 条
  • [31] Efficient Computing for One and Two Variance Components Parametric Tolerance Interval Testing
    Novick, Steven
    Hudson-Curtis, Buffy
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2019, 11 (02): : 146 - 151
  • [32] An Efficient Lagrangian Interpolation Scheme for Computing Flow Maps and Line Integrals using Discrete Velocity Data
    Guoqiao You
    Renkun Shi
    Yuhua Xu
    Journal of Scientific Computing, 2018, 76 : 120 - 144
  • [33] An Efficient Lagrangian Interpolation Scheme for Computing Flow Maps and Line Integrals using Discrete Velocity Data
    You, Guoqiao
    Shi, Renkun
    Xu, Yuhua
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (01) : 120 - 144
  • [34] Linear time algorithm to cover and hit a set of line segments optimally by two axis-parallel squares
    Sadhu, Sanjib
    Roy, Sasanka
    Nandy, Subhas C.
    Roy, Suchismita
    THEORETICAL COMPUTER SCIENCE, 2019, 769 : 63 - 74
  • [35] Discrete cuckoo search algorithms for two-sided robotic assembly line balancing problem
    Zixiang Li
    Nilanjan Dey
    Amira S. Ashour
    Qiuhua Tang
    Neural Computing and Applications, 2018, 30 : 2685 - 2696
  • [36] Discrete cuckoo search algorithms for two-sided robotic assembly line balancing problem
    Li, Zixiang
    Dey, Nilanjan
    Ashour, Amira S.
    Tang, Qiuhua
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (09): : 2685 - 2696
  • [37] Fast algorithms for computing one- and two-dimensional convolution in integer polynomial rings
    H. Krishna Garg
    C. C. Ko
    Circuits, Systems and Signal Processing, 1997, 16 : 121 - 139
  • [38] Fast algorithms for computing one- and two-dimensional convolution in integer polynomial rings
    Garg, HK
    Ko, CC
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1997, 16 (01) : 121 - 139
  • [39] One- and two-dimensional algorithms for length 15 and 30 discrete cosine transforms
    Wang, ZD
    Jullien, GA
    Miller, WC
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1996, 43 (02): : 149 - 153
  • [40] A Comparative Study between Two Algorithms for Computing the Generalized Centroid of an Interval Type-2 Fuzzy Set
    Bernal, Hector
    Duran, Karina
    Melgarejo, Miguel
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 954 - 959