Efficient algorithms for computing one or two discrete centers hitting a set of line segments

被引:0
|
作者
Xiaozhou He
Zhihui Liu
Bing Su
Yinfeng Xu
Feifeng Zheng
Binhai Zhu
机构
[1] Sichuan University,Business School
[2] Shandong Technology and Business University,School of Computer Science and Technology
[3] Xi’an Technological University,School of Economics and Management
[4] State Key Lab for Manufacturing Systems Engineering,Glorious Sun School of Business and Management
[5] Donghua University,Gianforte School of Computing
[6] Montana State University,undefined
来源
关键词
One or two discrete centers problem; Hit line segments; Computational geometry;
D O I
暂无
中图分类号
学科分类号
摘要
Given the scheduling model of bike-sharing, we consider the problem of hitting a set of n axis-parallel line segments in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} by a square or an ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty $$\end{document}-circle (and two squares, or two ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty $$\end{document}-circles) whose center(s) must lie on some line segment(s) such that the (maximum) edge length of the square(s) is minimized. Under a different tree model, we consider (virtual) hitting circles whose centers must lie on some tree edges with similar minmax-objectives (with the distance between a center to a target segment being the shortest path length between them). To be more specific, we consider the cases when one needs to compute one (and two) centers on some edge(s) of a tree with m edges, where n target segments must be hit, and the objective is to minimize the maximum path length from the target segments to the nearer center(s). We give three linear-time algorithms and an O(n2logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2\log n)$$\end{document} algorithm for the four problems in consideration.
引用
收藏
页码:1408 / 1423
页数:15
相关论文
共 50 条
  • [1] Efficient algorithms for computing one or two discrete centers hitting a set of line segments
    He, Xiaozhou
    Liu, Zhihui
    Su, Bing
    Xu, Yinfeng
    Zheng, Feifeng
    Zhu, Binhai
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (04) : 1408 - 1423
  • [2] Practical and efficient algorithms for the geometric hitting set problem
    Bus, Norbert
    Mustafa, Nabil H.
    Ray, Saurabh
    DISCRETE APPLIED MATHEMATICS, 2018, 240 : 25 - 32
  • [3] Approximation Algorithms for Hitting Triangle-Free Sets of Line Segments
    Joshi, Anup
    Narayanaswamy, N. S.
    ALGORITHM THEORY - SWAT 2014, 2014, 8503 : 357 - 367
  • [4] COMPUTING THE FULL VISIBILITY GRAPH OF A SET OF LINE SEGMENTS
    WISMATH, SK
    INFORMATION PROCESSING LETTERS, 1992, 42 (05) : 257 - 261
  • [5] Computing minimum bundling distance of a set of line segments
    Wang, Xiaoting
    Yang, Chenglei
    2015 International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI), 2015, : 233 - 235
  • [6] COMPUTING SIMPLE CIRCUITS FROM A SET OF LINE SEGMENTS
    RAPPAPORT, D
    IMAI, H
    TOUSSAINT, GT
    DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (03) : 289 - 304
  • [7] Two efficient algorithms for computing the characteristics of a subsegment of a digital straight line
    Lachaud, Jacques-Olivier
    Said, Mouhammad
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (15) : 2293 - 2315
  • [8] Computing an almost minimum set of spanning line segments of a polyhedron
    Wang, JY
    Liu, DY
    Wang, WP
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2001, 11 (05) : 475 - 485
  • [9] Optimal Covering and Hitting of Line Segments by Two Axis-Parallel Squares
    Sadhu, Sanjib
    Roy, Sasanka
    Nandy, Subhas C.
    Roy, Suchismita
    COMPUTING AND COMBINATORICS, COCOON 2017, 2017, 10392 : 457 - 468
  • [10] Discrete and mixed two-center problems for line segments
    Maji, Sukanya
    Sadhu, Sanjib
    Information Processing Letters, 2024, 184