On almost sure convergence for weighted sums of pairwise negatively quadrant dependent random variables

被引:0
|
作者
H. Jabbari
机构
[1] Ferdowsi University of Mashhad,Department of Statistics, Ordered and Spatial Data Center of Excellence
来源
Statistical Papers | 2013年 / 54卷
关键词
Almost sure limit theorem; Glivenko–Cantelli lemma; Negatively quadrant dependent; Weighted sums; 60F15; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Xn, n ≥ 1} be a sequence of pairwise negatively quadrant dependent (NQD) random variables. In this study, we prove almost sure limit theorems for weighted sums of the random variables. From these results, we obtain a version of the Glivenko–Cantelli lemma for pairwise NQD random variables under some fragile conditions. Moreover, a simulation study is done to compare the convergence rates with those of Azarnoosh (Pak J Statist 19(1):15–23, 2003) and Li et al. (Bull Inst Math 1:281–305, 2006).
引用
下载
收藏
页码:765 / 772
页数:7
相关论文
共 50 条
  • [31] Almost Sure Convergence Theorem and Strong Stability for Weighted Sums of NSD Random Variables
    Yan SHEN
    Xue Jun WANG
    Wen Zhi YANG
    Shu He HU
    Acta Mathematica Sinica,English Series, 2013, (04) : 743 - 756
  • [32] Almost sure convergence theorem and strong stability for weighted sums of NSD random variables
    Yan Shen
    Xue Jun Wang
    Wen Zhi Yang
    Shu He Hu
    Acta Mathematica Sinica, English Series, 2013, 29 : 743 - 756
  • [33] ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES
    Wu, Yongfeng
    Zhai, Mingqing
    Peng, JiangYan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (01): : 251 - 260
  • [34] Lr CONVERGENCE FOR WEIGHTED SUMS OF EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES
    Xu, Chen
    Xi, Mengmei
    Wang, Xuejun
    Xia, Hao
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 1157 - 1167
  • [35] On the strong convergence for weighted sums of negatively superadditive dependent random variables
    Bing Meng
    Dingcheng Wang
    Qunying Wu
    Journal of Inequalities and Applications, 2017
  • [36] ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF NEGATIVELY SUPERADDITIVE DEPENDENT RANDOM VARIABLES
    Seo, Hye-Young
    Shii, Da-Li
    Baek, Jong-Il
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2019, 37 (3-4): : 207 - 217
  • [37] A note on the complete convergence for weighted sums of negatively dependent random variables
    Sung, Soo Hak
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [38] Complete convergence for weighted sums of extended negatively dependent random variables
    Shen, Aiting
    Xue, Mingxiang
    Wang, Wenjuan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (03) : 1433 - 1444
  • [39] On the strong convergence for weighted sums of negatively superadditive dependent random variables
    Meng, Bing
    Wang, Dingcheng
    Wu, Qunying
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [40] Complete Convergence for Weighted Sums of Sequences of Negatively Dependent Random Variables
    Wu, Qunying
    JOURNAL OF PROBABILITY AND STATISTICS, 2011, 2011