An Integrated Novel Approach to Understand the Process of Groundwater Recharge in Mountain and Riparian Zone Aquifer System of Tamil Nadu, India

被引:0
|
作者
Banajarani Panda
S. Chidambaram
K. Tirumalesh
N. Ganesh
C. Thivya
R. Thilagavathi
S. Venkatramanan
M. V. Prasanna
N. Devaraj
A. L. Ramanathan
机构
[1] University of Nebraska,Department of Earth and Atmospheric Sciences
[2] Kuwait Institute for Scientific Research,Water Research Centre
[3] BARC,Isotope Hydrology Section, Isotope and Radiation Application Division
[4] Annamalai University,Department of Earth Sciences
[5] University of Madras,School of Earth and Atmospheric Sciences
[6] Ton Duc Thang University,Department for Management of Science and Technology Development
[7] Ton Duc Thang University,Faculty of Applied Sciences
[8] Curtin University Malaysia,Department of Applied Geology, Faculty of Engineering and Science
[9] Jawaharlal Nehru University,School of Environmental Sciences
来源
Aquatic Geochemistry | 2019年 / 25卷
关键词
Groundwater recharge; Geophysical subsurface; Hydrochemistry; Environmental isotopes; Factor analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The nature of groundwater recharge along the mountain front (MF) and riparian zone (RZ) was discerned by multiple tools involving rain/water level relationship, geophysical of subsurface, seasonal hydrochemistry and environmental isotopic signatures. The proposed study has been carried out in Courtallam Hills, the north-western part of Tirunelveli District, South India. The study area is a hilly terrain with narrow valleys endowed with steep slopes. The relationship between water-level fluctuation and precipitation were evaluated by observing daily water level in 8-h interval at three piezometer zones and regular rainfall data. It was inferred that the RZ played a role in storage zone and gets recharged from mountain block (MB) and lateral flow. The seasonal geochemistry of the groundwater was studied to determine the sources of recharge in MF and RZ. Geostatistical treatment of factor analysis revealed that weathering was the dominant recharge process along the foothill. The geophysical studies reveal good quality of groundwater observed in the northern part along with low conductance and high resistivity. The increased level of groundwater conductivity and lower resistivity was noted in southern part of the study area due to the irrigation activities. The isotopic tracers range from − 2.5 to − 12.6‰ for δ18O and from − 91.2 to − 15.5‰ for δ2H. Moreover, the groundwater recharge was evaluated by source of rainfall moisture. High-altitude recharge from MB along the MF was clearly indicated by depleted isotopic content of the water samples. It was also supported by hydrogeochemical and statistical evidences, showing that rainfall over both MB and MF zones provided the recharge to foothill aquifers, while the RZ zone was mainly recharged by local precipitation with less contribution from regional flows.
引用
收藏
页码:137 / 159
页数:22
相关论文
共 25 条