Scaling identity for crossing Brownian motion in a Poissonian potential

被引:0
|
作者
Mario V. Wüthrich
机构
[1] Department of Mathematics,
[2] ETH Zentrum,undefined
[3] HG G47.1,undefined
[4] CH-8092 Zürich,undefined
[5] Switzerland. e-mail: mwueth@math.ethz.ch,undefined
来源
关键词
Mathematics Subject Classification (1991): 60K35; 82D30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider d-dimensional Brownian motion in a truncated Poissonian potential (d≥ 2). If Brownian motion starts at the origin and ends in the closed ball with center y and radius 1, then the transverse fluctuation of the path is expected to be of order |y|ξ, whereas the distance fluctuation is of order |y|χ. Physics literature tells us that ξ and χ should satisfy a scaling identity 2ξ− 1 = χ. We give here rigorous results for this conjecture.
引用
收藏
页码:299 / 319
页数:20
相关论文
共 50 条
  • [41] Non-crossing Brownian Paths and Dyson Brownian Motion Under a Moving Boundary
    Gautie, Tristan
    Le Doussal, Pierre
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (05) : 752 - 805
  • [42] Non-crossing Brownian Paths and Dyson Brownian Motion Under a Moving Boundary
    Tristan Gautié
    Pierre Le Doussal
    Satya N. Majumdar
    Grégory Schehr
    Journal of Statistical Physics, 2019, 177 : 752 - 805
  • [43] Brownian motors driven by Poissonian fluctuations
    Czernik, T
    Niemiec, M
    Luczka, J
    ACTA PHYSICA POLONICA B, 2001, 32 (02): : 321 - 331
  • [44] p-adic Brownian motion is a scaling limit
    Weisbart, David
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (20)
  • [45] Lifschitz singularity for subordinate Brownian motions in presence of the Poissonian potential on the Sierpiriski gasket
    Kaleta, Kamil
    Pietruska-Paluba, Katarzyna
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (11) : 3897 - 3939
  • [46] Generating and scaling fractional Brownian motion on finite domains
    Cintoli, S
    Neuman, SP
    Di Federico, V
    GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (08) : 1 - 4
  • [47] Scaling behaviour of Brownian motion interacting with an external field
    Bujan-Nunez, MC
    MOLECULAR PHYSICS, 1998, 94 (02) : 361 - 371
  • [48] BOUNDARY CROSSING PROBABILITIES FOR HIGH-DIMENSIONAL BROWNIAN MOTION
    Fu, James C.
    Wu, Tung-Lung
    JOURNAL OF APPLIED PROBABILITY, 2016, 53 (02) : 543 - 553
  • [49] Crossing an Asymptotically Square-Root Boundary by the Brownian Motion
    Denisov, Denis E.
    Hinrichs, Guenter
    Sakhanenko, Alexander, I
    Wachtel, Vitali, I
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 316 (01) : 105 - 120
  • [50] Fractional Brownian motion satisfies two-way crossing
    Peyre, Remi
    BERNOULLI, 2017, 23 (4B) : 3571 - 3597