Certain Grüss-type inequalities via tempered fractional integrals concerning another function

被引:0
|
作者
Gauhar Rahman
Kottakkaran Sooppy Nisar
Saima Rashid
Thabet Abdeljawad
机构
[1] Shaheed Benazir Bhutto University,Department of Mathematics
[2] Prince Sattam bin Abdulaziz University,Department of Mathematics, College of Arts and Sciences
[3] Government College University,Department of Mathematics
[4] Prince Sultan University,Department of Mathematics and General Sciences
[5] China Medical University,Department of Medical Research
[6] Asia University,Department of Computer Science and Information Engineering
关键词
Fractional integrals; Generalized tempered fractional integrals; Inequalities; 26A33; 26D10; 26D53; 05A30;
D O I
暂无
中图分类号
学科分类号
摘要
We study a generalized left sided tempered fractional (GTF)-integral concerning another function Ψ in the kernel. Then we investigate several kinds of inequalities such as Grüss-type and certain other related inequalities by utilizing the GTF-integral. Additionally, we present various special cases of the main result. By utilizing the connection between GTF-integral and Riemann–Liouville integral concerning another function Ψ in the kernel, certain distinct particular cases of the main result are also presented. Furthermore, certain other inequalities can be formed by applying various kinds of conditions on the function Ψ.
引用
收藏
相关论文
共 50 条
  • [1] Certain Gruss-type inequalities via tempered fractional integrals concerning another function
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Rashid, Saima
    Abdeljawad, Thabet
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [2] Grüss-type integrals inequalities via generalized proportional fractional operators
    Saima Rashid
    Fahd Jarad
    Muhammad Aslam Noor
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [3] Grüss-Type Inequalities by Means of Generalized Fractional Integrals
    J. Vanterler da C. Sousa
    D. S. Oliveira
    E. Capelas de Oliveira
    Bulletin of the Brazilian Mathematical Society, New Series, 2019, 50 : 1029 - 1047
  • [4] On some Grüss-type inequalities via k-weighted fractional operators
    Benaissa, Bouharket
    Azzouz, Noureddine
    Sarikaya, Mehmet Zeki
    FILOMAT, 2024, 38 (12) : 4009 - 4019
  • [5] Generalized Ostrowski–Grüss-type Inequalities
    Heiner Gonska
    Ioan Raşa
    Maria-Daniela Rusu
    Results in Mathematics, 2012, 62 : 311 - 318
  • [6] Berezin Number, Grüss-Type Inequalities and Their Applications
    Ulaş Yamancı
    Remziye Tunç
    Mehmet Gürdal
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2287 - 2296
  • [7] Some new fractional q-integral Grüss-type inequalities and other inequalities
    Chaowu Zhu
    Wengui Yang
    Qingbo Zhao
    Journal of Inequalities and Applications, 2012
  • [8] Some k-fractional extension of Grüss-type inequalities via generalized Hilfer–Katugampola derivative
    Samaira Naz
    Muhammad Nawaz Naeem
    Yu-Ming Chu
    Advances in Difference Equations, 2021
  • [9] Grüss-type and Ostrowski-type inequalities in approximation theory
    A. M. Acu
    H. Gonska
    I. Raşa
    Ukrainian Mathematical Journal, 2011, 63 : 843 - 864
  • [10] On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function
    Jleli, Mohamed
    Samet, Bessem
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1252 - 1260