Conjugated dicarboxylate anodes for Li-ion batteries

被引:0
|
作者
Armand M. [1 ]
Grugeon S. [1 ]
Vezin H. [2 ]
Laruelle S. [1 ]
Ribière P. [1 ]
Poizot P. [1 ]
Tarascon J.-M. [1 ]
机构
[1] LRCS, Université de Picardie Jules Verne, CNRS (UMR-6007), 80039, Amiens
[2] LCOM, CNRS (UMR-8009), Bat. C4
关键词
D O I
10.1038/nmat2372
中图分类号
学科分类号
摘要
Present Li-ion batteries for portable electronics are based on inorganic electrodes. For upcoming large-scale applications the notion of materials sustainability produced by materials made through eco-efficient processes, such as renewable organic electrodes, is crucial. We here report on two organic salts, Li2C8H4O4 (Li terephthalate) and Li 2C6H4O4(Li trans-trans-muconate), with carboxylate groups conjugated within the molecular core, which are respectively capable of reacting with two and one extra Li per formula unit at potentials of 0.8 and 1.4 V, giving reversible capacities of 300 and 150 mAhg-1. The activity is maintained at 80°C with polyethyleneoxide-based electrolytes. A noteworthy advantage of the Li2C8H4O4 and Li2C6H 4O4 negative electrodes is their enhanced thermal stability over carbon electrodes in 1M LiPF"6 ethylene carbonate-dimethyl carbonate electrolytes, which should result in safer Li-ion cells. Moreover, as bio-inspired materials, both compounds are the metabolites of aromatic hydrocarbon oxidation, and terephthalic acid is available in abundance from the recycling of polyethylene terephthalate. © 2009 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:120 / 125
页数:5
相关论文
共 50 条
  • [41] Tin oxide tin composite anodes for use in Li-ion batteries
    Wolfenstine, J
    Sakamoto, J
    Huang, CK
    JOURNAL OF POWER SOURCES, 1998, 75 (01) : 181 - 182
  • [42] Nanosilicon-Coated Graphene Granules as Anodes for Li-Ion Batteries
    Evanoff, Kara
    Magasinski, Alexandre
    Yang, Junbing
    Yushin, Gleb
    ADVANCED ENERGY MATERIALS, 2011, 1 (04) : 495 - 498
  • [43] Crosslinked Gel Polymer Electrolytes for Si Anodes in Li-Ion Batteries
    Lee, Jeong Hun
    Kim, Soochan
    Cho, Misuk
    Chanthad, Chalathorn
    Lee, Youngkwan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (13) : A2755 - A2761
  • [44] Free standing aluminum nanostructures as anodes for Li-ion rechargeable batteries
    Au, Ming
    McWhorter, Scott
    Ajo, Henry
    Adams, Thad
    Zhao, Yiping
    Gibbs, John
    JOURNAL OF POWER SOURCES, 2010, 195 (10) : 3333 - 3337
  • [45] Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries
    Lim, Linda Y.
    Liu, Nian
    Cui, Yi
    Toney, Michael F.
    CHEMISTRY OF MATERIALS, 2014, 26 (12) : 3739 - 3746
  • [46] A DFT study on Sumanene, Corannulene and Nanosheet as the Anodes in Li-Ion Batteries
    Gharibzadeh, Fatemeh
    Vessally, Esmail
    Edjlali, Ladan
    Es'haghi, Moosa
    Mohammadi, Robab
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2020, 39 (06): : 51 - 62
  • [47] Surface chemistry of intermetallic AlSb-anodes for Li-ion batteries
    Stjerndahl, M.
    Bryngelsson, H.
    Gustafsson, T.
    Vaughey, J. T.
    Thackeray, M. M.
    Edstrom, K.
    ELECTROCHIMICA ACTA, 2007, 52 (15) : 4947 - 4955
  • [48] Electrochemical performance of MWCNT reinforced ZnO anodes for Li-ion batteries
    Guler, Mehmet Oguz
    Cetinkaya, Tugrul
    Tocoglu, Ubeyd
    Akbulut, Hatem
    MICROELECTRONIC ENGINEERING, 2014, 118 : 54 - 60
  • [49] Hysteresis Behavior in the Sorption Equilibrium of Water in Anodes for Li-Ion Batteries
    Eser, Jochen C.
    Deichmann, Birthe
    Wirsching, Tobias
    Weidler, Peter G.
    Scharfer, Philip
    Schabel, Wilhelm
    LANGMUIR, 2020, 36 (22) : 6193 - 6201
  • [50] Electrospun Si and Si/C Fiber Anodes for Li-Ion Batteries
    Mondal, Abhishek
    Wycisk, Ryszard
    Waugh, John
    Pintauro, Peter
    BATTERIES-BASEL, 2023, 9 (12):