The 3D Incompressible Euler Equations with a Passive Scalar: A Road to Blow-Up?

被引:0
|
作者
John D. Gibbon
Edriss S. Titi
机构
[1] Imperial College,Department of Mathematics
[2] Weizmann Institute of Science,Department of Computer Science and Applied Mathematics
[3] University of California,Department of Mathematics and Department of Mechanical and Aerospace Engineering
来源
关键词
Incompressible Euler equations; Passive scalar; No-normal-flow boundary conditions; Singularity; Null point; 35B44; 35Q31; 76B03;
D O I
暂无
中图分类号
学科分类号
摘要
The three-dimensional incompressible Euler equations with a passive scalar θ are considered in a smooth domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varOmega\subset \mathbb{R}^{3}$\end{document} with no-normal-flow boundary conditions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{u}\cdot\hat{\boldsymbol{n}}|_{\partial\varOmega} = 0$\end{document}. It is shown that smooth solutions blow up in a finite time if a null (zero) point develops in the vector B=∇q×∇θ, provided B has no null points initially: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{\omega} = \operatorname{curl}\boldsymbol {u}$\end{document} is the vorticity and q=ω⋅∇θ is a potential vorticity. The presence of the passive scalar concentration θ is an essential component of this criterion in detecting the formation of a singularity. The problem is discussed in the light of a kinematic result by Graham and Henyey (Phys. Fluids 12:744–746, 2000) on the non-existence of Clebsch potentials in the neighbourhood of null points.
引用
收藏
页码:993 / 1000
页数:7
相关论文
共 50 条
  • [31] LOGARITHMICALLY IMPROVED BLOW-UP CRITERIA FOR THE 3D NONHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VACUUM
    Hou, Qianqian
    Xu, Xiaojing
    Ye, Zhuan
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [32] Localized non blow-up criterion of the Beale-Kato-Majda type for the 3D Euler equations
    Chae, Dongho
    Wolf, Jorg
    [J]. MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 837 - 865
  • [33] Blow-up criteria for 3D Boussinesq equations in the multiplier space
    Qiu, Hua
    Du, Yi
    Yao, Zheng'an
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) : 1820 - 1824
  • [34] A BLOW-UP CRITERION FOR 3D COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH VACUUM
    Xu, Xinying
    Zhang, Jianwen
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (02):
  • [35] Localized non blow-up criterion of the Beale-Kato-Majda type for the 3D Euler equations
    Dongho Chae
    Jörg Wolf
    [J]. Mathematische Annalen, 2022, 383 : 837 - 865
  • [37] Blow-up criteria of smooth solutions to the 3D Boussinesq equations
    Qin, Yuming
    Yang, Xinguang
    Wang, Yu-Zhu
    Liu, Xin
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (03) : 278 - 285
  • [38] Blow-Up Criterion of Weak Solutions for the 3D Boussinesq Equations
    Dai, Zhaohui
    Wang, Xiaosong
    Zhang, Lingrui
    Hou, Wei
    [J]. JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [39] A note on blow-up criterion of the 3d magnetic Benard equations
    Liu, Qiao
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 104
  • [40] A blow-up criterion for 3D Boussinesq equations in Besov spaces
    Qiu, Hua
    Du, Yi
    Yao, Zheng'an
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (03) : 806 - 815