The 3D Incompressible Euler Equations with a Passive Scalar: A Road to Blow-Up?

被引:0
|
作者
John D. Gibbon
Edriss S. Titi
机构
[1] Imperial College,Department of Mathematics
[2] Weizmann Institute of Science,Department of Computer Science and Applied Mathematics
[3] University of California,Department of Mathematics and Department of Mechanical and Aerospace Engineering
来源
关键词
Incompressible Euler equations; Passive scalar; No-normal-flow boundary conditions; Singularity; Null point; 35B44; 35Q31; 76B03;
D O I
暂无
中图分类号
学科分类号
摘要
The three-dimensional incompressible Euler equations with a passive scalar θ are considered in a smooth domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varOmega\subset \mathbb{R}^{3}$\end{document} with no-normal-flow boundary conditions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{u}\cdot\hat{\boldsymbol{n}}|_{\partial\varOmega} = 0$\end{document}. It is shown that smooth solutions blow up in a finite time if a null (zero) point develops in the vector B=∇q×∇θ, provided B has no null points initially: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol{\omega} = \operatorname{curl}\boldsymbol {u}$\end{document} is the vorticity and q=ω⋅∇θ is a potential vorticity. The presence of the passive scalar concentration θ is an essential component of this criterion in detecting the formation of a singularity. The problem is discussed in the light of a kinematic result by Graham and Henyey (Phys. Fluids 12:744–746, 2000) on the non-existence of Clebsch potentials in the neighbourhood of null points.
引用
收藏
页码:993 / 1000
页数:7
相关论文
共 50 条
  • [1] The 3D Incompressible Euler Equations with a Passive Scalar: A Road to Blow-Up?
    Gibbon, John D.
    Titi, Edriss S.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (06) : 993 - 1000
  • [2] On the blow-up problem for the axisymmetric 3D Euler equations
    Chae, Dongho
    [J]. NONLINEARITY, 2008, 21 (09) : 2053 - 2060
  • [3] Localized Blow-Up Criterion for C1,α Solutions to the 3D Incompressible Euler Equations
    Chae, Dongho
    Wolf, Joerg
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (03)
  • [4] A blow-up criterion for the inhomogeneous incompressible Euler equations
    Bae, Hantaek
    Lee, Woojae
    Shin, Jaeyong
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
  • [5] Instability for axisymmetric blow-up solutions to incompressible Euler equations
    Lafleche, Laurent
    Vasseur, Alexis F.
    Vishik, Misha
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 155 : 140 - 154
  • [6] A Blow-Up Criterion for 3D Nonhomogeneous Incompressible Magnetohydrodynamic Equations with Vacuum
    Wang, Shujuan
    Tian, Miaoqing
    Su, Rijian
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [7] Energy Concentrations and Type I Blow-Up for the 3D Euler Equations
    Chae, Dongho
    Wolf, Joerg
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) : 1627 - 1669
  • [8] Energy Concentrations and Type I Blow-Up for the 3D Euler Equations
    Dongho Chae
    Jörg Wolf
    [J]. Communications in Mathematical Physics, 2020, 376 : 1627 - 1669
  • [9] An unfinished tale of nonlinear PDEs: Do solutions of 3D incompressible Euler equations blow-up in finite time?
    Pomeau, Y
    Sciamarella, D
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2005, 205 (1-4) : 215 - 221
  • [10] A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization
    Larios, Adam
    Petersen, Mark R.
    Titi, Edriss S.
    Wingate, Beth
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2018, 32 (01) : 23 - 34