Bose–Einstein Condensation in a Dilute, Trapped Gas at Positive Temperature

被引:0
|
作者
Andreas Deuchert
Robert Seiringer
Jakob Yngvason
机构
[1] Institute of Science and Technology Austria (IST Austria),Faculty of Physics
[2] University of Vienna,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider an interacting, dilute Bose gas trapped in a harmonic potential at a positive temperature. The system is analyzed in a combination of a thermodynamic and a Gross–Pitaevskii (GP) limit where the trap frequency ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega}$$\end{document}, the temperature T, and the particle number N are related by N∼(T/ω)3→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N \sim (T / \omega)^{3} \to\infty}$$\end{document} while the scattering length is so small that the interaction energy per particle around the center of the trap is of the same order of magnitude as the spectral gap in the trap. We prove that the difference between the canonical free energy of the interacting gas and the one of the noninteracting system can be obtained by minimizing the GP energy functional. We also prove Bose–Einstein condensation in the following sense: The one-particle density matrix of any approximate minimizer of the canonical free energy functional is to leading order given by that of the noninteracting gas but with the free condensate wavefunction replaced by the GP minimizer.
引用
收藏
页码:723 / 776
页数:53
相关论文
共 50 条
  • [31] Bose-Einstein transition temperature in a dilute repulsive gas
    Holzmann, M
    Fuchs, JN
    Baym, GA
    Blaizot, JP
    Laloë, F
    COMPTES RENDUS PHYSIQUE, 2004, 5 (01) : 21 - 37
  • [32] Disorder-induced shift of condensation temperature for dilute trapped Bose gases
    Timmer, M.
    Pelster, A.
    Graham, R.
    EUROPHYSICS LETTERS, 2006, 76 (05): : 760 - 766
  • [33] Vortices in a trapped dilute Bose-Einstein condensate
    Fetter, AL
    Svidzinsky, AA
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (12) : R135 - R194
  • [34] A gapless theory of Bose-Einstein condensation in dilute gases at finite temperature
    Morgan, SA
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (19) : 3847 - 3893
  • [35] Bose-Einstein condensation and Casimir effect of trapped ideal Bose gas in between two slabs
    Biswas, Shyamal
    EUROPEAN PHYSICAL JOURNAL D, 2007, 42 (01): : 109 - 112
  • [36] Bose-Einstein condensation and Casimir effect of trapped ideal Bose gas in between two slabs
    Shyamal Biswas
    The European Physical Journal D, 2007, 42 : 109 - 112
  • [37] Theory of Bose-Einstein condensation in trapped gases
    Dalfovo, F
    Giorgini, S
    Pitaevskii, LP
    Stringari, S
    REVIEWS OF MODERN PHYSICS, 1999, 71 (03) : 463 - 512
  • [38] Theory of Bose-Einstein condensation for trapped atoms
    Proukakis, NP
    Burnett, K
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1733): : 2235 - 2245
  • [39] Bose-Einstein condensation in trapped dipolar gases
    Santos, L
    Shlyapnikov, GV
    Zoller, P
    Lewenstein, M
    PHYSICAL REVIEW LETTERS, 2000, 85 (09) : 1791 - 1794
  • [40] Bose-Einstein condensation in trapped atomic gases
    Castin, Y
    NUCLEAR MATTER IN DIFFERENT PHASES AND TRANSITIONS, 1999, 95 : 173 - 192