Bose–Einstein Condensation in a Dilute, Trapped Gas at Positive Temperature

被引:0
|
作者
Andreas Deuchert
Robert Seiringer
Jakob Yngvason
机构
[1] Institute of Science and Technology Austria (IST Austria),Faculty of Physics
[2] University of Vienna,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider an interacting, dilute Bose gas trapped in a harmonic potential at a positive temperature. The system is analyzed in a combination of a thermodynamic and a Gross–Pitaevskii (GP) limit where the trap frequency ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega}$$\end{document}, the temperature T, and the particle number N are related by N∼(T/ω)3→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N \sim (T / \omega)^{3} \to\infty}$$\end{document} while the scattering length is so small that the interaction energy per particle around the center of the trap is of the same order of magnitude as the spectral gap in the trap. We prove that the difference between the canonical free energy of the interacting gas and the one of the noninteracting system can be obtained by minimizing the GP energy functional. We also prove Bose–Einstein condensation in the following sense: The one-particle density matrix of any approximate minimizer of the canonical free energy functional is to leading order given by that of the noninteracting gas but with the free condensate wavefunction replaced by the GP minimizer.
引用
收藏
页码:723 / 776
页数:53
相关论文
共 50 条
  • [1] Bose-Einstein Condensation in a Dilute, Trapped Gas at Positive Temperature
    Deuchert, Andreas
    Seiringer, Robert
    Yngvason, Jakob
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 368 (02) : 723 - 776
  • [2] Critical temperature of Bose-Einstein condensation of a dilute Bose gas
    Wang, XZ
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 433 - 443
  • [3] Dilute, trapped bose gases and bose-einstein condensation
    Seiringer, R.
    LARGE COULOMB SYSTEMS, 2006, 695 : 249 - 274
  • [4] Proof of Bose-Einstein condensation for dilute trapped gases
    Lieb, EH
    Seiringer, R
    PHYSICAL REVIEW LETTERS, 2002, 88 (17) : 4 - 170409
  • [5] Bose-Einstein condensation temperature of a trapped interacting Bose-Fermi gas mixture
    Ma, YL
    Chui, ST
    PHYSICAL REVIEW A, 2002, 66 (05): : 5
  • [6] Bose-Einstein condensation temperature of a trapped interacting Bose-Fermi gas mixture
    Ma, Yong-Li
    Chui, Siu-Tat
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (05): : 1 - 053611
  • [7] Bose-Einstein condensation of a trapped gas in n dimensions
    Yan, ZJ
    PHYSICAL REVIEW A, 1999, 59 (06): : 4657 - 4659
  • [8] Bose-Einstein condensation of a trapped gas in n dimensions
    Yan, Zijun
    Physical Review A. Atomic, Molecular, and Optical Physics, 1999, 59 (06):
  • [9] Bose-Einstein condensation of an ideal Bose gas trapped in any dimension
    Chen, LX
    Yan, ZJ
    Li, MZ
    Chen, CH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (41): : 8289 - 8294
  • [10] Bose-Einstein condensation and superfluidity of a dilute Bose gas in a random potential
    Kobayashi, M
    Tsubota, M
    PHYSICAL REVIEW B, 2002, 66 (17): : 1 - 7