Using Machine Learning Methods to Predict the Magnitude and the Direction of Mask Fragments Displacement in Optical Proximity Correction (OPC)

被引:0
|
作者
P. E. Tryasoguzov
A. V. Kuzovkov
I. M. Karandashev
G. S. Teplov
机构
[1] Molecular Electronics Research Institute (JSC MERI),
[2] Scientific Research Institute for System Analysis,undefined
[3] Russian Academy of Sciences,undefined
[4] Moscow Institute of Physics and Technology (MIPT University),undefined
[5] Рeoples’ Friendship University of Russia (RUDN University),undefined
来源
关键词
optical proximity correction; machine learning; artificial neural networks; computational photolithography;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:291 / 297
页数:6
相关论文
共 50 条
  • [41] Using machine learning methods to predict financial performance: Does disclosure tone matter?
    Mousa, Gehan A.
    Elamir, Elsayed A. H.
    Hussainey, Khaled
    INTERNATIONAL JOURNAL OF DISCLOSURE AND GOVERNANCE, 2022, 19 (01) : 93 - 112
  • [42] Using Machine Learning Methods to Predict Consumer Confidence from Search Engine Data
    Han, Huijian
    Li, Zhiming
    Li, Zongwei
    SUSTAINABILITY, 2023, 15 (04)
  • [43] Missing data analysis using machine learning methods to predict the performance of technical students
    Melo Junior, Gilberto de
    Alcala, Symone G. Soares
    Furriel, Geovanne Pereira
    Vieira, Silvio L.
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2020, 12 (02): : 134 - 143
  • [44] Machine Learning-Enhanced Model-Based Optical Proximity Correction by Using Convolutional Neural Network-Based Variable Threshold Method
    Zhu, Jinhao
    Ren, Zhiwei
    Li, Ying
    Liu, Xianhe
    Wu, Qiang
    Li, Yanli
    Wang, Qi
    IEEE ACCESS, 2024, 12 : 191517 - 191526
  • [45] Proximal Methods for Plant Stress Detection Using Optical Sensors and Machine Learning
    Zubler, Alanna V.
    Yoon, Jeong-Yeol
    BIOSENSORS-BASEL, 2020, 10 (12):
  • [46] Proximal Methods for Plant Stress Detection Using Optical Sensors and Machine Learning
    Zubler A.V.
    Yoon J.-Y.
    Biosensors, 2020, 10 (12):
  • [47] Using a kernel extreme learning machine with grey wolf optimization to predict the displacement of step-like landslide
    Kang Liao
    Yiping Wu
    Fasheng Miao
    Linwei Li
    Yang Xue
    Bulletin of Engineering Geology and the Environment, 2020, 79 : 673 - 685
  • [48] Using a kernel extreme learning machine with grey wolf optimization to predict the displacement of step-like landslide
    Liao, Kang
    Wu, Yiping
    Miao, Fasheng
    Li, Linwei
    Xue, Yang
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2020, 79 (02) : 673 - 685
  • [49] Machine learning methods to predict amyloid positivity using domain scores from cognitive tests
    Guogen Shan
    Charles Bernick
    Jessica Z. K. Caldwell
    Aaron Ritter
    Scientific Reports, 11
  • [50] Using machine learning methods to predict VOC emissions in chemical production with hourly process parameters
    Ye, Hanyun
    Du, Zhen
    Lu, Hao
    Tian, Jinping
    Chen, Lyujun
    Lin, Wenhao
    JOURNAL OF CLEANER PRODUCTION, 2022, 369