Using Machine Learning Methods to Predict the Magnitude and the Direction of Mask Fragments Displacement in Optical Proximity Correction (OPC)

被引:0
|
作者
P. E. Tryasoguzov
A. V. Kuzovkov
I. M. Karandashev
G. S. Teplov
机构
[1] Molecular Electronics Research Institute (JSC MERI),
[2] Scientific Research Institute for System Analysis,undefined
[3] Russian Academy of Sciences,undefined
[4] Moscow Institute of Physics and Technology (MIPT University),undefined
[5] Рeoples’ Friendship University of Russia (RUDN University),undefined
来源
关键词
optical proximity correction; machine learning; artificial neural networks; computational photolithography;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:291 / 297
页数:6
相关论文
共 50 条
  • [1] Using Machine Learning Methods to Predict the Magnitude and the Direction of Mask Fragments Displacement in Optical Proximity Correction (OPC)
    Tryasoguzov, P. E.
    Kuzovkov, A., V
    Karandashev, I. M.
    Teplov, G. S.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2021, 30 (04) : 291 - 297
  • [2] Neural networks application for OPC (optical proximity correction) in mask making
    Jedrasik, P
    MICROELECTRONIC ENGINEERING, 1996, 30 (1-4) : 161 - 164
  • [3] Adjustment of optical proximity correction (OPC) software for mask process correction (MPC). Module 1: Optical mask writing tool simulation
    Barberet, A
    Fanget, G
    Buck, P
    Toublan, O
    Richoilley, JC
    Tissier, M
    21ST ANNUAL BACUS SYMPOSIUM ON PHOTOMASK TECHNOLOGY, PTS 1 AND 2, 2002, 4562 : 511 - 521
  • [4] Optical Proximity Correction Using Machine Learning Assisted Human Decision
    Lin, Albert
    Rawat, Tejender
    Chang, Chung-Yuan
    Tung, Han-Chun
    Liu, Hsueh-Li
    Yu, Peichen
    IEEE PHOTONICS JOURNAL, 2023, 15 (01):
  • [5] Optimization of Machine Learning Guided Optical Proximity Correction
    Cho, Joonhyuk
    Cho, Gangmin
    Shin, Youngsoo
    2018 IEEE 61ST INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2018, : 921 - 924
  • [6] Adjustment of optical proximity correction (OPC) software for mask process correction (MPC). Module 2: Lithography simulation based on optical mask writing tool simulation
    Barberet, A
    Buck, P
    Fanget, G
    Toublan, O
    Richoilley, JC
    Tissier, M
    PHOTOMASK AND NEXT-GENERATION LITHOGRAPHY MASK TECHNOLOGY IX, 2002, 4754 : 460 - 470
  • [7] Machine learning optical proximity correction with generative adversarial networks
    Ciou, Weilun
    Hu, Tony
    Tsai, Yi-Yen
    Hsuan, Chung-Te
    Yang, Elvis
    Yang, Ta-Hung
    Chen, Kuang-Chao
    JOURNAL OF MICRO-NANOPATTERNING MATERIALS AND METROLOGY-JM3, 2022, 21 (04):
  • [8] Using Machine Learning Etch Models in OPC and ILT Correction
    Hooker, Kevin
    Zavyalova, Lena
    Huang, Shuo
    Chen, Li-Jin
    DESIGN-PROCESS-TECHNOLOGY CO-OPTIMIZATION XV, 2021, 11614
  • [9] Advanced high resolution mask processes using optical proximity correction
    Chan, YD
    PHOTOMASK AND X-RAY MASK TECHNOLOGY VI, 1999, 3748 : 11 - 18
  • [10] Understanding the impact of rigorous mask effects in the presence of empirical process models used in optical proximity correction (OPC)
    Lam, Michael C.
    Adam, Konstantinos
    OPTICAL MICROLITHOGRAPHY XX, PTS 1-3, 2007, 6520