Correction to: On the equivalence of spherical splines with least-squares collocation and Stokes’s formula for regional geoid computation

被引:0
|
作者
Vegard Ophaug
Christian Gerlach
机构
[1] Norwegian University of Life Sciences (NMBU),Faculty of Science and Technology
[2] Bavarian Academy of Sciences and Humanities,Commission of Geodesy and Glaciology
来源
Journal of Geodesy | 2020年 / 94卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The authors would like to apologize to the editor and readers for a bug in the numerical implementation of the formula for the initial guess on the regularization parameter 2013, as given in the second paragraph on page 1370, and repeated here for convenience.
引用
收藏
相关论文
共 50 条
  • [31] IRG2018: A regional geoid model in Iran using Least Squares Collocation
    Ramouz, Sabah
    Afrasteh, Yosra
    Reguzzoni, Mirko
    Safari, Abdolreza
    Saadat, Abdoreza
    STUDIA GEOPHYSICA ET GEODAETICA, 2019, 63 (02) : 191 - 214
  • [32] A general model for modifying Stokes' formula and its least-squares solution
    Sjöberg, LE
    JOURNAL OF GEODESY, 2003, 77 (7-8) : 459 - 464
  • [33] Conservation of mass and momentum of the least-squares spectral collocation scheme for the Stokes problem
    Kattelans, Thorsten
    Heinrichs, Wilhelm
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (13) : 4649 - 4664
  • [34] IRG2018: A regional geoid model in Iran using Least Squares Collocation
    Sabah Ramouz
    Yosra Afrasteh
    Mirko Reguzzoni
    Abdolreza Safari
    Abdoreza Saadat
    Studia Geophysica et Geodaetica, 2019, 63 : 191 - 214
  • [35] A general model for modifying Stokes’ formula and its least-squares solution
    L.E. Sjöberg
    Journal of Geodesy, 2003, 77 : 459 - 464
  • [36] On the determination of marine geoid models by least-squares collocation and spectral methods using heterogeneous data
    Vergos, GS
    Tziavos, IN
    Andritsanos, VD
    WINDOW ON THE FUTURE OF GEODESY, 2005, 128 : 332 - 337
  • [37] Methodology of Local Geoid Improvement Using Least-Squares Collocation with Parameters and an Optimal Covariance Function
    Phinyo, Khetsophon
    Dumrongchai, Puttipol
    Srimanee, Chawis
    Witchayangkoon, Boonsap
    INTERNATIONAL TRANSACTION JOURNAL OF ENGINEERING MANAGEMENT & APPLIED SCIENCES & TECHNOLOGIES, 2021, 12 (05):
  • [38] AN OPTIMUM WAY TO DETERMINE A PRECISE GRAVIMETRIC GEOID MODEL BASED ON THE LEAST-SQUARES MODIFICATION OF STOKES' FORMULA - A CASE STUDY OF SWEDEN
    Kiamehr, R.
    Sjoberg, L. E.
    ACTA GEODAETICA ET GEOPHYSICA HUNGARICA, 2010, 45 (02): : 148 - 164
  • [39] An optimum way to determine a precise gravimetric geoid model based on the least-squares modification of Stokes’ formula — A case study of Sweden
    R. Kiamehr
    L. E. Sjöberg
    Acta Geodaetica et Geophysica Hungarica, 2010, 45 : 148 - 164
  • [40] COMPUTATION OF GEOID FROM DEFLECTIONS OF VERTICAL USING A LEAST-SQUARES SURFACE FITTING TECHNIQUE
    MERRY, CL
    VANICEK, P
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1973, 54 (04): : 230 - 230