On the joint spectral radius of matrices of order 2 with equal spectral radius

被引:0
|
作者
Bernhard Mößner
机构
[1] Universität Freiburg,Abteilung für Angewandte Mathematik, Mathematisches Institut
来源
关键词
Joint spectral radius; Matrices; Order 2; 15A18; 15A60;
D O I
暂无
中图分类号
学科分类号
摘要
We provide explicit formulas for the joint spectral radius of certain classes of pairs of real matrices of order 2 with equal spectral radius.
引用
收藏
页码:243 / 254
页数:11
相关论文
共 50 条
  • [21] Bounds on the Spectral Radius of Nonnegative Matrices
    Babouklis, Fotis
    Adam, Maria
    Assimakis, Nicholas
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCE AND ENGINEERING (MACISE 2020), 2020, : 51 - +
  • [22] Some inequalities on the spectral radius of matrices
    Linlin Zhao
    Qingbing Liu
    Journal of Inequalities and Applications, 2018
  • [23] SPECTRAL RADIUS OF (O 1) MATRICES
    BRUALDI, RA
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (05): : 606 - &
  • [24] Spectral radius and infinity norm of matrices
    Zheng, Baodong
    Wang, Liancheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (01) : 243 - 250
  • [25] Approximation of the joint spectral radius of a set of matrices using sum of squares
    Parrilo, Pablo A.
    Jadbabaie, Ali
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, PROCEEDINGS, 2007, 4416 : 444 - +
  • [26] Infinite families of trees with equal spectral radius
    Belardo, Francesco
    Brunetti, Maurizio
    EXAMPLES AND COUNTEREXAMPLES, 2024, 5
  • [27] ON THE TRACE CHARACTERIZATION OF THE JOINT SPECTRAL RADIUS
    Xu, Jianhong
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 367 - 375
  • [28] Joint spectral radius and invariant subspaces
    V. S. Shul'man
    Yu. V. Turovskii
    Functional Analysis and Its Applications, 2000, 34 : 156 - 158
  • [29] On the spectral radius and the spectral norm of Hadamard products of nonnegative matrices
    Huang, Zejun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (02) : 457 - 462
  • [30] Topological radicals and joint spectral radius
    V. S. Shulman
    Yu. V. Turovskii
    Functional Analysis and Its Applications, 2012, 46 : 287 - 304