Canonical Graph Contractions of Linear Relations on Hilbert Spaces

被引:0
|
作者
Zsigmond Tarcsay
Zoltán Sebestyén
机构
[1] Eötvös Loránd University,Department of Applied Analysis and Computational Mathematics
[2] Alfréd Rényi Institute of Mathematics,undefined
来源
关键词
Linear relation; Unbounded operator; Multivalued operator; Closed operator; Graph contraction; Stone decomposition; Primary 47A05;
D O I
暂无
中图分类号
学科分类号
摘要
Given a closed linear relation T between two Hilbert spaces H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}$$\end{document}, the corresponding first and second coordinate projections PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_T$$\end{document} and QT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_T$$\end{document} are both linear contractions from T to H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}, and to K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}$$\end{document}, respectively. In this paper we investigate the features of these graph contractions. We show among other things that PTPT∗=(I+T∗T)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_T^{}P_T^*=(I+T^*T)^{-1}$$\end{document}, and that QTQT∗=I-(I+TT∗)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_T^{}Q_T^*=I-(I+TT^*)^{-1}$$\end{document}. The ranges ranPT∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ran}}P_T^{*}$$\end{document} and ranQT∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ran}}Q_T^{*}$$\end{document} are proved to be closely related to the so called ‘regular part’ of T. The connection of the graph projections to Stone’s decomposition of a closed linear relation is also discussed.
引用
收藏
相关论文
共 50 条
  • [1] Canonical Graph Contractions of Linear Relations on Hilbert Spaces
    Tarcsay, Zsigmond
    Sebestyen, Zoltan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (01)
  • [2] Renorms and topological linear contractions on Hilbert spaces
    施茂祥
    谭炳均
    陈国强
    Science China Mathematics, 1999, (03) : 246 - 254
  • [3] Axioms for the category of Hilbert spaces and linear contractions
    Heunen, Chris
    Kornell, Andre
    van der Schaaf, Nesta
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (04) : 1532 - 1549
  • [4] Renorms and topological linear contractions on Hilbert spaces
    施茂祥
    谭炳均
    陈国强
    ScienceinChina,SerA., 1999, Ser.A.1999 (03) : 246 - 254
  • [5] Renorms and topological linear contractions on Hilbert spaces
    Shih, Mauhsiang
    Tam, Pingkwan
    Tan, Kok-Keong
    Science in China Series A Mathematics, Physics, Astronomy, 1999, 42 (03): : 246 - 254
  • [6] Renorms and topological linear contractions on Hilbert spaces
    Shih Mauhsiang
    Tam Pingkwan
    Tan Kok-Keong
    Science in China Series A: Mathematics, 1999, 42 (3): : 246 - 254
  • [7] Renorms and topological linear contractions on Hilbert spaces
    Shih, MS
    Tam, PK
    Tan, KK
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 1999, 42 (03): : 246 - 254
  • [8] On the Adjoint of Linear Relations in Hilbert Spaces
    Adrian Sandovici
    Mediterranean Journal of Mathematics, 2020, 17
  • [9] On the Adjoint of Linear Relations in Hilbert Spaces
    Sandovici, Adrian
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
  • [10] Quasi-Fredholm Linear Relations in Hilbert Spaces
    Alvarez, T.
    Chamkha, Y.
    Mnif, M.
    FILOMAT, 2017, 31 (09) : 2575 - 2585