Quasi-Fredholm Linear Relations in Hilbert Spaces

被引:5
|
作者
Alvarez, T. [1 ]
Chamkha, Y. [2 ]
Mnif, M. [2 ]
机构
[1] Univ Oviedo, Dept Math, Oviedo 33007, Asturias, Spain
[2] Univ Sfax, Fac Sci Sfax, Dept Math, BP 1171, Sfax 3000, Tunisia
关键词
Range space relation; degree of a linear relation; quasi-Fredholm relation; polynomial in a linear relation; KATO DECOMPOSITION; OPERATORS;
D O I
10.2298/FIL1709575A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain some results concerning the ascent and descent of a quasi-Fredholm relation in a Hilbert space and we analyze the behaviour of a polynomial in a quasi-Fredholm relation in a Hilbert space.
引用
收藏
页码:2575 / 2585
页数:11
相关论文
共 50 条
  • [1] Quasi-Fredholm and Semi-B-Fredholm Linear Relations
    Teresa Álvarez
    Mediterranean Journal of Mathematics, 2017, 14
  • [2] Quasi-Fredholm and Semi-B-Fredholm Linear Relations
    Alvarez, Teresa
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (01)
  • [3] On Strictly Quasi-Fredholm Linear Relations and Semi-B-Fredholm Linear Relation Perturbations
    Hafsa, Bouaniza
    Mnif, Maher
    FILOMAT, 2017, 31 (20) : 6337 - 6355
  • [4] THE KATO DECOMPOSITION OF QUASI-FREDHOLM RELATIONS
    Labrousse, J. -Ph
    Sandovici, A.
    de Snoo, H. S. V.
    Winkler, H.
    OPERATORS AND MATRICES, 2010, 4 (01): : 1 - 51
  • [5] B-Fredholm Linear Relations in Hilbert Spaces
    Ghorbel, A.
    Mnif, M.
    ANALYSIS MATHEMATICA, 2020, 46 (02) : 265 - 282
  • [6] B-Fredholm linear relations in Hilbert spaces
    A. Ghorbel
    M. Mnif
    Analysis Mathematica, 2020, 46 : 265 - 282
  • [7] On a class of quasi-Fredholm operators
    M. Berkani
    Integral Equations and Operator Theory, 1999, 34 : 244 - 249
  • [8] On a class of quasi-Fredholm operators
    Berkani, M
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1999, 34 (02) : 244 - 249
  • [9] Quasi-Fredholm Spectrum and Compact Perturbations
    Gupta, Anuradha
    Kumar, Ankit
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (01)
  • [10] Quasi-Fredholm operators and localized SVEP
    Aiena, Pietro
    ACTA SCIENTIARUM MATHEMATICARUM, 2007, 73 (1-2): : 251 - 263