With low cost and high safety, aqueous zinc-based batteries have received considerable interest. Nevertheless, the excess utilization of zinc metal in the anodes of these batteries reduces energy density and increases costs. Herein, an ultrathin electrode of approximately 6.2 μm thick is constructed by coating Ti3C2Tx/nanocellulose hybrid onto a stainless steel foil. This electrode is used as the Zn-free anode for aqueous hybrid Zn-Na battery, in which, a concentrated electrolyte is used to improve electrochemical reversibility. The Ti3C2Tx/nanocellulose coating is found to improve the electrolyte wettability, facilitate desolvation process of hydrated Zn2+ ions, lower nucleation overpotential, improve zinc plating kinetics, guide horizontal zinc plating along the Zn(002) facet, and inhibit parasitic side reactions. It is also found that the Na3V2(PO4)3 cathode material adopts a highly reversible Zn2+/Na+ co-intercalation charge storage mechanism in this system. Thanks to these benefits, the assembled hybrid Zn-Na battery exhibits excellent rate capability, superior cyclability, and good anti-freezing ability. This work provides a new concept of electrode design for electrochemical energy storage.