Special elements of the lattice of epigroup varieties

被引:0
|
作者
Vyacheslav Yu. Shaprynskiǐ
Dmitry V. Skokov
Boris M. Vernikov
机构
[1] Ural Federal University,Institute of Mathematics and Computer Science
来源
Algebra universalis | 2016年 / 76卷
关键词
epigroup; variety of epigroups; lattice; neutral element; modular element; upper-modular element; Primary: 20M07; Secondary: 08B15;
D O I
暂无
中图分类号
学科分类号
摘要
We study special elements of three types (namely, neutral, modular and upper-modular elements) in the lattice of all epigroup varieties. Neutral elements are completely determined (it turns out that only four varieties have this property). We find a strong necessary condition for modular elements that completely reduces the problem of description of corresponding varieties to nilvarieties satisfying identities of some special type. Modular elements are completely classified within the class of commutative varieties, while upper-modular elements are completely determined within the wider class of strongly permutative varieties.
引用
收藏
页码:1 / 30
页数:29
相关论文
共 50 条
  • [21] Special Elements of the Lattice of Overcommutative Varieties of Semigroups (vol 70, page 608, 2001)
    Vernikov, B. M.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 908 - 909
  • [22] Codistributive Elements of the Lattice of Semigroup Varieties
    Vernikov, B. M.
    RUSSIAN MATHEMATICS, 2011, 55 (07) : 9 - 16
  • [23] DISTRIBUTIVE ELEMENTS OF THE LATTICE OF SEMIGROUP VARIETIES
    Vernikov, B. M.
    Shaprynskii, V. Yu.
    ALGEBRA AND LOGIC, 2010, 49 (03) : 201 - 220
  • [24] Distributive elements of the lattice of semigroup varieties
    Vernikov B.M.
    Shaprynskii V.Y.
    Algebra and Logic, 2010, 49 (3) : 201 - 220
  • [25] Standard Elements of the Lattice of Monoid Varieties
    S. V. Gusev
    Algebra and Logic, 2021, 59 : 415 - 422
  • [26] Cancellable elements of the lattice of semigroup varieties
    Gusev, Sergey, V
    Skokov, Dmitry, V
    Vernikov, Boris M.
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 26 (01): : 34 - 46
  • [27] COVERING ELEMENTS IN THE LATTICE OF GROUP VARIETIES
    KLEIMAN, YG
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1981, (03): : 76 - 77
  • [28] CANCELLABLE ELEMENTS OF THE LATTICE OF MONOID VARIETIES
    Gusev, S., V
    Lee, E. W. H.
    ACTA MATHEMATICA HUNGARICA, 2021, 165 (01) : 156 - 168
  • [29] On modular elements of the lattice of semigroup varieties
    Vernikov, Boris M.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2007, 48 (04): : 595 - 606
  • [30] Cancellable elements of the lattice of monoid varieties
    S. V. Gusev
    E. W. H. Lee
    Acta Mathematica Hungarica, 2021, 165 : 156 - 168