Solitary Wave Interactions of the Euler-Poisson Equations

被引:0
|
作者
M. Haragus
D. P. Nicholls
D. H. Sattinger
机构
[1] Department of Mathematics,
[2] Université de Bordeaux I,undefined
[3] F-33405 Bordeaux,undefined
[4] France ,undefined
[5] Department of Mathematics,undefined
[6] University of Notre Dame,undefined
[7] Notre Dame,undefined
[8] Indiana 46556,undefined
[9] USA ,undefined
[10] Department of Mathematics,undefined
[11] Utah State University,undefined
[12] Logan,undefined
[13] Utah 84322,undefined
[14] USA ,undefined
来源
Journal of Mathematical Fluid Mechanics | 2003年 / 5卷
关键词
Keywords. KdV equation, plasma equations, resonant soliton interactions.¶2000 Mathematics Subject Classification. 35Q51, 35Q53.;
D O I
暂无
中图分类号
学科分类号
摘要
We study solitary wave interactions in the Euler-Poisson equations modeling ion acoustic plasmas and their approximation by KdV n-solitons. Numerical experiments are performed and solutions compared to appropriately scaled KdV $n$-solitons. While largely correct qualitatively the soliton solutions did not accurately capture the scattering shifts experienced by the solitary waves. We propose correcting this discrepancy by carrying out the singular perturbation scheme which produces the KdV equation at lowest order to higher order. The foundation for this program is laid and preliminary results are presented.
引用
收藏
页码:92 / 118
页数:26
相关论文
共 50 条
  • [21] Multiplicity of stationary solutions to the Euler-Poisson equations
    Deng, Yinbin
    Yang, Tong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (01) : 252 - 289
  • [22] SOLUTIONS OF EULER-POISSON EQUATIONS IN R~n
    邓引斌
    高燕
    向建林
    Acta Mathematica Scientia, 2008, (01) : 24 - 42
  • [23] ON THE QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE EULER-POISSON EQUATIONS
    Yang, Jianwei
    Li, Dongling
    Yang, Xiao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (11): : 6797 - 6806
  • [24] Solutions of Euler-Poisson equations for gaseous stars
    Deng, YB
    Liu, TP
    Yang, T
    Yao, ZA
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) : 261 - 285
  • [25] Blowup phenomena of solutions to Euler-Poisson equations
    Deng, YB
    Xiang, JL
    Yang, T
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 286 (01) : 295 - 306
  • [26] On the Steady State Relativistic Euler-Poisson Equations
    Mai, La-Su
    Li, Jingyu
    Zhang, Kaijun
    ACTA APPLICANDAE MATHEMATICAE, 2013, 125 (01) : 135 - 157
  • [27] Calculation of Normal Forms of the Euler-Poisson Equations
    Bruno, Alexander D.
    Edneral, Victor F.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2012, 2012, 7442 : 60 - 71
  • [28] SINGULAR POINTS OF SOLUTIONS OF THE EULER-POISSON EQUATIONS
    BELYAEV, OV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1989, (05): : 3 - 6
  • [29] Solutions of Euler-Poisson Equations¶for Gaseous Stars
    Yinbin Deng
    Tai-Ping Liu
    Tong Yang
    Zheng-an Yao
    Archive for Rational Mechanics and Analysis, 2002, 164 : 261 - 285
  • [30] Convergence of compressible Euler-Poisson system to incompressible Euler equations
    Wang, Shu
    Yang, Jianwei
    Luo, Dang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (11) : 3408 - 3418