Method of Noise-Robust Estimation of Parameters of an Autoregressive Model in the Frequency Domain

被引:0
|
作者
V. K. Zadiraka
V. Yu. Semenov
Ye. V. Semenova
机构
[1] National Academy of Sciences of Ukraine,V. M. Glushkov Institute of Cybernetics
[2] Kyiv Academic University,Institute of Mathematics
[3] Delta SPE,undefined
[4] LLC,undefined
[5] National Academy of Sciences of Ukraine,undefined
来源
关键词
autoregressive model; likelihood function; Expectation-Maximization method; fast Fourier transform;
D O I
暂无
中图分类号
学科分类号
摘要
The article considers the problem of estimating the parameters of the autoregressive (AR) signal in the presence of background noise. Based on the frequency representation of the AR signal, a technique of calculating the likelihood function of the AR parameters is shown and the implementation of the Expectation-Maximization method for iterative evaluation of the AR parameters is considered. Analysis of different measures of distortion of speech signals shows that the proposed approaches in the frequency domain have the same accuracy as the corresponding approaches in the time domain, but are characterized by significantly lower computing costs.
引用
收藏
页码:836 / 842
页数:6
相关论文
共 50 条
  • [21] Noise-Robust Federated Learning With Model Heterogeneous Clients
    Fang, Xiuwen
    Ye, Mang
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 4053 - 4071
  • [22] Model adaptation employing DNN-based estimation of noise corruption function for noise-robust speech recognition
    Yoon, Ki-mu
    Kim, Wooil
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2019, 38 (01): : 47 - 50
  • [23] A data-driven model parameter compensation method for noise-robust speech recognition
    Chung, YJ
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2005, E88D (03): : 432 - 434
  • [24] On estimation of parameters for spatial autoregressive model
    Davydov Y.
    Paulauskas V.
    Statistical Inference for Stochastic Processes, 2008, 11 (3) : 237 - 247
  • [25] NaCL: noise-robust cross-domain contrastive learning for unsupervised domain adaptation
    Li, Jingzheng
    Sun, Hailong
    MACHINE LEARNING, 2023, 112 (09) : 3473 - 3496
  • [26] NaCL: noise-robust cross-domain contrastive learning for unsupervised domain adaptation
    Jingzheng Li
    Hailong Sun
    Machine Learning, 2023, 112 : 3473 - 3496
  • [27] Towards On-device Domain Adaptation for Noise-Robust Keyword Spotting
    Cioflan, Cristian
    Cavigelli, Lukas
    Rusci, Manuele
    de Prado, Miguel
    Benini, Luca
    2022 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2022): INTELLIGENT TECHNOLOGY IN THE POST-PANDEMIC ERA, 2022, : 82 - 85
  • [28] An efficient method for estimation of autoregressive signals in noise
    Zheng, WX
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 1433 - 1436
  • [29] Noise-robust channel estimation for DVB-T fixed receptions
    Lee, You-Seok
    Kim, Hyoung-Nam
    Son, Kyung Sik
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2007, 53 (01) : 27 - 32
  • [30] Noise-robust channel estimation for DVB-T fixed receptions
    Lee, You-Seok
    Kim, Hyoung-Nam
    ICCE: 2007 DIGEST OF TECHNICAL PAPERS INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, 2007, : 425 - +