Unraveling the Morphological Evolution and Etching Kinetics of Porous Silicon Nanowires During Metal-Assisted Chemical Etching

被引:0
|
作者
Lester U. Vinzons
Lei Shu
SenPo Yip
Chun-Yuen Wong
Leanne L. H. Chan
Johnny C. Ho
机构
[1] City University of Hong Kong,Department of Electronic Engineering
[2] City University of Hong Kong,Department of Physics and Materials Science
[3] City University of Hong Kong,Shenzhen Research Institute
[4] City University of Hong Kong,Department of Biology and Chemistry
[5] City University of Hong Kong,Center for Biosystems, Neuroscience, and Nanotechnology
[6] City University of Hong Kong,State Key Laboratory of Millimeter Waves
来源
Nanoscale Research Letters | 2017年 / 12卷
关键词
Silicon nanowire; Metal-assisted chemical etching; Silver catalyst; Silicon nanostructure; Porous silicon;
D O I
暂无
中图分类号
学科分类号
摘要
Many potential applications of porous silicon nanowires (SiNWs) fabricated with metal-assisted chemical etching are highly dependent on the precise control of morphology for device optimization. However, the effects of key etching parameters, such as the amount of deposited metal catalyst, HF–oxidant molar ratio (χ), and solvent concentration, on the morphology and etching kinetics of the SiNWs still have not been fully explored. Here, the changes in the nanostructure and etch rate of degenerately doped p-type silicon in a HF–H2O2–H2O etching system with electrolessly deposited silver catalyst are systematically investigated. The surface morphology is found to evolve from a microporous and cratered structure to a uniform array of SiNWs at sufficiently high χ values. The etch rates at the nanostructure base and tip are correlated with the primary etching induced by Ag and the secondary etching induced by metal ions and diffused holes, respectively. The H2O concentration also affects the χ window where SiNWs form and the etch rates, mainly by modulating the reactant dilution and diffusion rate. By controlling the secondary etching and reactant diffusion via χ and H2O concentration, respectively, the fabrication of highly doped SiNWs with independent control of porosity from length is successfully demonstrated, which can be potentially utilized to improve the performance of SiNW-based devices.
引用
收藏
相关论文
共 50 条
  • [41] Effect of catalyst shape on etching orientation in metal-assisted chemical etching of silicon
    Xia, Weiwei
    Zhu, Jun
    Wang, Haibo
    Zeng, Xianghua
    CRYSTENGCOMM, 2014, 16 (20): : 4289 - 4297
  • [42] Fabrication of Silicon Nanowires by Metal-Assisted Chemical Etching Combined with Micro-Vibration
    Huang, Weiye
    Wu, Junyi
    Li, Wenxin
    Chen, Guojin
    Chu, Changyong
    Li, Chao
    Zhu, Yucheng
    Yang, Hui
    Chao, Yan
    MATERIALS, 2023, 16 (15)
  • [43] Raman diagnostics of photoinduced heating of silicon nanowires prepared by metal-assisted chemical etching
    S. P. Rodichkina
    L. A. Osminkina
    M. Isaiev
    A. V. Pavlikov
    A. V. Zoteev
    V. A. Georgobiani
    K. A. Gonchar
    A. N. Vasiliev
    V. Yu. Timoshenko
    Applied Physics B, 2015, 121 : 337 - 344
  • [44] Growth, Structure and Optical Properties of Silicon Nanowires Formed by Metal-Assisted Chemical Etching
    Gonchar, K. A.
    Osminkina, L. A.
    Galkin, R. A.
    Gongalsky, M. B.
    Marshov, V. S.
    Timoshenko, V. Yu
    Kulmas, M. N.
    Solovyev, V. V.
    Kudryavtsev, A. A.
    Sivakov, V. A.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2012, 7 (06) : 602 - 606
  • [45] A Processing Window for Fabricating Heavily Doped Silicon Nanowires by Metal-Assisted Chemical Etching
    Qi, Yangyang
    Wang, Zhen
    Zhang, Mingliang
    Yang, Fuhua
    Wang, Xiaodong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (47): : 25090 - 25096
  • [46] A systematic study of silicon nanowires array fabricated through metal-assisted chemical etching
    Zhang, Shiying
    Li, Zhenhua
    Xu, Qingjun
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2020, 92 (03):
  • [47] Raman diagnostics of photoinduced heating of silicon nanowires prepared by metal-assisted chemical etching
    Rodichkina, S. P.
    Osminkina, L. A.
    Isaiev, M.
    Pavlikov, A. V.
    Zoteev, A. V.
    Georgobiani, V. A.
    Gonchar, K. A.
    Vasiliev, A. N.
    Timoshenko, V. Yu.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2015, 121 (03): : 337 - 344
  • [48] Influence of the doping level on the porosity of silicon nanowires prepared by metal-assisted chemical etching
    Geyer, Nadine
    Wollschlaeger, Nicole
    Fuhrmann, Bodo
    Tonkikh, Alexander
    Berger, Andreas
    Werner, Peter
    Jungmann, Marco
    Krause-Rehberg, Reinhard
    Leipner, Hartmut S.
    NANOTECHNOLOGY, 2015, 26 (24)
  • [49] Metal-assisted electrochemical etching of silicon
    Huang, Z. P.
    Geyer, N.
    Liu, L. F.
    Li, M. Y.
    Zhong, P.
    NANOTECHNOLOGY, 2010, 21 (46)
  • [50] Porous silicon antireflection layer for solar cells using metal-assisted chemical etching
    Chaoui, Rachid
    Mahmoudi, Bedra
    Ahmed, Yasmina Si
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (07): : 1724 - 1728