An Ensemble Intrusion Detection System based on Acute Feature Selection

被引:0
|
作者
Hariprasad S
Deepa T
机构
[1] SRM Institute of Science and Technology,Department of Electronics and Communication Engineering
来源
关键词
IoT Security; Acute feature selection; Shallow learning; KNN; Flooding attacks;
D O I
暂无
中图分类号
学科分类号
摘要
As the Internet of Things (IoT), 5G, and Artificial intelligence (AI) continue to converge, the number of security incidents and occurrences on the networks has recently increased. Since more devices are connected to IoT networks, security is becoming a major concern. Conventional intrusion detection systems (IDS) are not well suited for use in the complex lightweight IoT environment. This research paper presented an IDS for the smart city environment based on IoT- Message queuing telemetry transport (MQTT) networks that could detect attacks using shallow learning algorithms. The proposed framework has four parts (i) a smart city network model with multiple MQTT clients (sensors and IoT devices) is created with the help of hardware. (ii) Injected a flooding attack on the MQTT broker to create the IDS dataset with normal and attack features, (iii) Based on the acute feature selection algorithm to select the optmized features from the raw dataset and validated with the Jaccard coefficient. (iv) The dataset is further trained and validated using shallow learning algorithms such as extreme gradient boosting (XGB), K-nearest Neighbors (KNN) and Random forest (RF). Experimental results outperform with better attack detection rate, attack prediction rate and improved accuracy over 97% with lower redundancy using selected features. Experimental results show that the proposed approach is more vulnerable to attacks in the IoT network.
引用
收藏
页码:8267 / 8280
页数:13
相关论文
共 50 条
  • [41] Clustering Enabled Classification using Ensemble Feature Selection for Intrusion Detection
    Salo, Fadi
    Injadat, MohammadNoor
    Moubayed, Abdallah
    Nassif, Ali Bou
    Essex, Aleksander
    2019 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2019, : 276 - 281
  • [42] An optimized adaptive ensemble model with feature selection for network intrusion detection
    Yang, Zhongjun
    Liu, Zhi
    Zong, Xuejun
    Wang, Guogang
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (04):
  • [43] Vitality Based Feature Selection For Intrusion Detection
    Jupriyadi
    Kistijantoro, Achmad Imam
    2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA), 2014, : 93 - 96
  • [44] EFS-DNN: An Ensemble Feature Selection-Based Deep Learning Approach to Network Intrusion Detection System
    Wang, Zehong
    Liu, Jianhua
    Sun, Leyao
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [45] Attribute Selection and Ensemble Classifier based Novel Approach to Intrusion Detection System
    Kunal
    Dua, Mohit
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 2191 - 2199
  • [46] Improved Crow Search-Based Feature Selection and Ensemble Learning for IoT Intrusion Detection
    Jayalatchumy, D.
    Ramalingam, Rajakumar
    Balakrishnan, Aravind
    Safran, Mejdl
    Alfarhood, Sultan
    IEEE ACCESS, 2024, 12 : 33218 - 33235
  • [47] An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection
    Ye, Zhiwei
    Luo, Jun
    Zhou, Wen
    Wang, Mingwei
    He, Qiyi
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 151 : 124 - 136
  • [48] Ensemble Based Optimal Feature Selection Algorithm for Efficient Intrusion Detection in Wireless Sensor Network
    Sundar, S. Shyam
    Bhuvaneswaran, R. S.
    SaiRamesh, L.
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2024, 18 (08): : 2214 - 2229
  • [49] Unsupervised Feature Selection Method for Intrusion Detection System
    Ambusaidi, Mohammed A.
    He, Xiangjian
    Nanda, Priyadarsi
    2015 IEEE TRUSTCOM/BIGDATASE/ISPA, VOL 1, 2015, : 295 - 301
  • [50] Feature Selection Algorithms in Intrusion Detection System: A Survey
    Maza, Sofiane
    Touahria, Mohamed
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (10): : 5079 - 5099