A comparative study of forest methods for time-to-event data: variable selection and predictive performance

被引:0
|
作者
Yingxin Liu
Shiyu Zhou
Hongxia Wei
Shengli An
机构
[1] Southern Medical University,Department of Biostatistics, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research)
关键词
Survival analysis; Random survival Forest; Conditional inference Forest; Maximally selected rank statistics; Machine learning; Variable selection; Brier score;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A comparative study of forest methods for time-to-event data: variable selection and predictive performance
    Liu, Yingxin
    Zhou, Shiyu
    Wei, Hongxia
    An, Shengli
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
  • [2] Comparison of Variable Selection Methods for Time-to-Event Data in High-Dimensional Settings
    Gilhodes, Julia
    Dalenc, Florence
    Gal, Jocelyn
    Zemmour, Christophe
    Leconte, Eve
    Boher, Jean-Marie
    Filleron, Thomas
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020
  • [3] Combined performance of screening and variable selection methods in ultra-high dimensional data in predicting time-to-event outcomes
    Lira Pi
    Susan Halabi
    [J]. Diagnostic and Prognostic Research, 2 (1)
  • [4] Aggregation methods and comparative study in time-to-event analysis models
    Fernandez, Camila
    Chen, Chung Shue
    Gaillard, Pierre
    Silva, Alonso
    [J]. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [5] Penalized variable selection in copula survival models for clustered time-to-event data
    Kwon, Sookhee
    Ha, Il Do
    Kim, Jong-Min
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (04) : 657 - 675
  • [6] A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
    Stefan Leger
    Alex Zwanenburg
    Karoline Pilz
    Fabian Lohaus
    Annett Linge
    Klaus Zöphel
    Jörg Kotzerke
    Andreas Schreiber
    Inge Tinhofer
    Volker Budach
    Ali Sak
    Martin Stuschke
    Panagiotis Balermpas
    Claus Rödel
    Ute Ganswindt
    Claus Belka
    Steffi Pigorsch
    Stephanie E. Combs
    David Mönnich
    Daniel Zips
    Mechthild Krause
    Michael Baumann
    Esther G. C. Troost
    Steffen Löck
    Christian Richter
    [J]. Scientific Reports, 7
  • [7] A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
    Leger, Stefan
    Zwanenburg, Alex
    Pilz, Karoline
    Lohaus, Fabian
    Linge, Annett
    Zoephel, Klaus
    Kotzerke, Joerg
    Schreiber, Andreas
    Tinhofer, Inge
    Budach, Volker
    Sak, Ali
    Stuschke, Martin
    Balermpas, Panagiotis
    Roedel, Claus
    Ganswindt, Ute
    Belka, Claus
    Pigorsch, Steffi
    Combs, Stephanie E.
    Moennich, David
    Zips, Daniel
    Krause, Mechthild
    Baumann, Michael
    Troost, Esther G. C.
    Loeck, Steffen
    Richter, Christian
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Methods for Informative Censoring in Time-to-Event Data Analysis
    Jin, Man
    Fang, Yixin
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2024, 16 (01): : 47 - 54
  • [9] Performance of Three Estimation Methods in Repeated Time-to-Event Modeling
    Kristin E. Karlsson
    Elodie L. Plan
    Mats O. Karlsson
    [J]. The AAPS Journal, 2011, 13 : 83 - 91
  • [10] Methods to Analyze Time-to-Event Data: The Cox Regression Analysis
    Abd ElHafeez, Samar
    D'Arrigo, Graziella
    Leonardis, Daniela
    Fusaro, Maria
    Tripepi, Giovanni
    Roumeliotis, Stefanos
    [J]. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2021, 2021