A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling

被引:150
|
作者
Leger, Stefan [1 ,2 ,3 ,4 ]
Zwanenburg, Alex [1 ,2 ,3 ,4 ,10 ]
Pilz, Karoline [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Lohaus, Fabian [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Linge, Annett [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Zoephel, Klaus [12 ,14 ,15 ]
Kotzerke, Joerg [12 ,14 ,15 ]
Schreiber, Andreas [16 ]
Tinhofer, Inge [3 ,5 ,17 ]
Budach, Volker [3 ,5 ,17 ]
Sak, Ali [4 ,6 ,18 ]
Stuschke, Martin [4 ,6 ,18 ]
Balermpas, Panagiotis [3 ,7 ,19 ]
Roedel, Claus [3 ,7 ,19 ]
Ganswindt, Ute [20 ,21 ,22 ]
Belka, Claus [3 ,8 ,20 ,21 ,22 ]
Pigorsch, Steffi [3 ,8 ,23 ]
Combs, Stephanie E. [3 ,8 ,23 ,24 ]
Moennich, David [3 ,9 ,25 ,26 ]
Zips, Daniel [3 ,9 ,25 ,26 ]
Krause, Mechthild [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Baumann, Michael [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Troost, Esther G. C. [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Loeck, Steffen [1 ,2 ,3 ,4 ,11 ,12 ]
Richter, Christian [1 ,2 ,3 ,4 ,11 ,12 ,13 ]
机构
[1] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, OncoRay Natl Ctr Radiat Res Oncol, Fac Med, Dresden, Germany
[2] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Univ Hosp Carl Gustav Carus, Dresden, Germany
[3] German Canc Res Ctr, Heidelberg, Germany
[4] German Canc Consortium DKTK, Partner Site Dresden, Dresden, Germany
[5] German Canc Consortium DKTK, Partner Site Berlin, Berlin, Germany
[6] German Canc Consortium DKTK, Partner Site Essen, Essen, Germany
[7] German Canc Consortium DKTK, Partner Site Frankfurt, Frankfurt, Germany
[8] German Canc Consortium DKTK, Partner Site Munich, Munich, Germany
[9] German Canc Consortium DKTK, Partner Site Tubingen, Tubingen, Germany
[10] Natl Ctr Tumor Dis NCT, Partner Site Dresden, Dresden, Germany
[11] Tech Univ Dresden, Fac Med, Dept Radiotherapy & Radiat Oncol, Dresden, Germany
[12] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[13] Helmholtz Zentrum Dresden Rossendorf, Inst Radiooncol OncoRay, Dresden, Germany
[14] Tech Univ Dresden, Fac Med, Dept Nucl Med, Dresden, Germany
[15] Helmholtz Zentrum Dresden Rossendorf, PET Ctr, Inst Radiopharmaceut Canc Res, Dresden, Germany
[16] Tech Univ Dresden, Teaching Hosp Dresden Friedrichstadt, Clin Radiat Oncol, Dresden, Germany
[17] Charite, Dept Radiooncol & Radiotherapy, Berlin, Germany
[18] Univ Duisburg Essen, Med Fac, Dept Radiotherapy, Essen, Germany
[19] Goethe Univ Frankfurt, Dept Radiotherapy & Oncol, Frankfurt, Germany
[20] Heidelberg Univ, Med Sch, Dept Radiat Oncol, Heidelberg Ion Therapy Ctr HIT, Heidelberg, Germany
[21] Ludwig Maximilians Univ Munchen, Dept Radiat Oncol, Munich, Germany
[22] Helmholtz Zentrum, Clin Cooperat Grp, Personalized Radiotherapy Head & Neck Canc, Munich, Germany
[23] Tech Univ Munich, Dept Radiat Oncol, Munich, Germany
[24] Helmholtz Zentrum Munchen, Inst Innovat Radiotherapy iRT, Oberschleissheim, Germany
[25] Eberhard Karls Univ Tubingen, Fac Med, Dept Radiat Oncol, Tubingen, Germany
[26] Eberhard Karls Univ Tubingen, Univ Hosp Tubingen, Tubingen, Germany
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
COOCCURRENCE TEXTURE STATISTICS; FEATURES; RADIOCHEMOTHERAPY; MARKER; PET;
D O I
10.1038/s41598-017-13448-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g., MSR-RF: C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
    Stefan Leger
    Alex Zwanenburg
    Karoline Pilz
    Fabian Lohaus
    Annett Linge
    Klaus Zöphel
    Jörg Kotzerke
    Andreas Schreiber
    Inge Tinhofer
    Volker Budach
    Ali Sak
    Martin Stuschke
    Panagiotis Balermpas
    Claus Rödel
    Ute Ganswindt
    Claus Belka
    Steffi Pigorsch
    Stephanie E. Combs
    David Mönnich
    Daniel Zips
    Mechthild Krause
    Michael Baumann
    Esther G. C. Troost
    Steffen Löck
    Christian Richter
    [J]. Scientific Reports, 7
  • [2] Aggregation methods and comparative study in time-to-event analysis models
    Fernandez, Camila
    Chen, Chung Shue
    Gaillard, Pierre
    Silva, Alonso
    [J]. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [3] A comparative study of forest methods for time-to-event data: variable selection and predictive performance
    Liu, Yingxin
    Zhou, Shiyu
    Wei, Hongxia
    An, Shengli
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
  • [4] A comparative study of forest methods for time-to-event data: variable selection and predictive performance
    Yingxin Liu
    Shiyu Zhou
    Hongxia Wei
    Shengli An
    [J]. BMC Medical Research Methodology, 21
  • [5] Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study
    Yang, Xulin
    Qiu, Hang
    Wang, Liya
    Wang, Xiaodong
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25
  • [6] A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data
    Wolfson, Julian
    Bandyopadhyay, Sunayan
    Elidrisi, Mohamed
    Vazquez-Benitez, Gabriela
    Vock, David M.
    Musgrove, Donald
    Adomavicius, Gediminas
    Johnson, Paul E.
    O'Connor, Patrick J.
    [J]. STATISTICS IN MEDICINE, 2015, 34 (21) : 2941 - 2957
  • [7] Survival analysis—time-to-event data and censoring
    Tanujit Dey
    Stuart R. Lipsitz
    Zara Cooper
    Quoc-Dien Trinh
    Martin Krzywinski
    Naomi Altman
    [J]. Nature Methods, 2022, 19 : 906 - 908
  • [8] Methods to Analyse Time-to-Event Data: The Kaplan-Meier Survival Curve
    D'Arrigo, Graziella
    Leonardis, Daniela
    Abd ElHafeez, Samar
    Fusaro, Maria
    Tripepi, Giovanni
    Roumeliotis, Stefanos
    [J]. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2021, 2021
  • [9] Modelling flowering of plants using time-to-event methods
    Ritz, Christian
    Pipper, Christian
    Yndgaard, Flemming
    Fredlund, Kenneth
    Steinrucken, Gerhard
    [J]. EUROPEAN JOURNAL OF AGRONOMY, 2010, 32 (02) : 155 - 161
  • [10] Big Data Toolsets to Pharmacometrics: Application of Machine Learning for Time-to-Event Analysis
    Gong, Xiajing
    Hu, Meng
    Zhao, Liang
    [J]. CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2018, 11 (03): : 305 - 311