On the role of Cu addition in toughness improvement of coarse grained heat affected zone in a low carbon high strength steel

被引:0
|
作者
Xiaohui Xi
Jinliang Wang
Liqing Chen
Zhaodong Wang
机构
[1] Northeastern University,State Key Laboratory of Rolling and Automation
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this article, the coarse grained heat affected zone (CGHAZ) of a low carbon high strength steel was simulated at two heat inputs on a Gleeble-3800 thermo-mechanical simulator. A comparative study was conducted to reveal the role of Cu addition in toughness improvement by microstructure characterization and Charpy impact test. Microstructure observation suggested that there is no observable difference in the microstructure and prior austenite grain size between Cu-free steel and Cu-bearing steel, but a higher density of high-angle grain boundary (HAGB) was obtained in Cu-bearing steel with 50 kJ/cm. This was intrinsically associated with the configuration of three Bain groups from the aspect of crystallography. The optimum configuration can be achieved by adjusting transformation driving force, cooling rate and nucleation characteristics during martensite/bainite transformation. In this study, Cu addition played a determining role in increasing transformation driving force at high cooling rate, and altering the diffusion kinetics of alloying elements at low cooling rate. Accordingly, the density of HAGB can be optimized to be beneficial for high toughness in CGHAZ. Therefore, the optimum toughness was obtained in Cu-bearing steel with heat input of 50 kJ/cm, which was featured by the impact energy of ~ 198 J at − 40 °C.
引用
收藏
页码:10863 / 10877
页数:14
相关论文
共 50 条
  • [21] Effect of Zr-Ti combined deoxidation on toughness of coarse-grained heat-affected zone with high heat input welding of low carbon high strength steels
    An, Zheng-Yuan
    Wu, Kai-Ming
    Lu, Wei-Yu
    Wang, Hong-Hong
    Wan, Xiang-Liang
    Yao, Yong-Kuan
    Wang, Dao-Yuan
    Cailiao Rechuli Xuebao/Transactions of Materials and Heat Treatment, 2013, 34 (07): : 106 - 111
  • [22] Toughness and Microstructure of Coarse Grain Heat Affected Zone with High Heat Input Welding in Zr-bearing Low Carbon Steel
    Shi, Minghao
    Zhang, Pengyan
    Zhu, Fuxian
    ISIJ INTERNATIONAL, 2014, 54 (01) : 188 - 192
  • [23] Effect of Microstructure on High-Strength Low-Alloy Steel Welded Joint Toughness with Simulation of Heat-Affected Zone Coarse-Grained Area
    Vorkachev, K. G.
    Stepanov, P. P.
    Efron, L. I.
    Kantor, M. M.
    Chastukhin, A. V.
    Zharkov, S. V.
    METALLURGIST, 2021, 64 (9-10) : 875 - 884
  • [24] Effect of Microstructure on High-Strength Low-Alloy Steel Welded Joint Toughness with Simulation of Heat-Affected Zone Coarse-Grained Area
    K. G. Vorkachev
    P. P. Stepanov
    L. I. Éfron
    M. M. Kantor
    A. V. Chastukhin
    S. V. Zharkov
    Metallurgist, 2021, 64 : 875 - 884
  • [25] Effect of Heat Input on Microstructure and Toughness of Coarse Grained Heat Affected Zone of Q890 Steel
    Cui, Bing
    Peng, Yun
    Zhao, Lin
    Peng, Mengdu
    An, Tongbang
    Ma, Chengyong
    ISIJ INTERNATIONAL, 2016, 56 (01) : 132 - 139
  • [26] Phase evolution and mechanical properties of coarse-grained heat affected zone of a Cu-free high strength low alloy hull structure steel
    Lei, Xuanwei
    Dong, Shi
    Huang, Jihua
    Yang, Jiang
    Chen, Shuhai
    Zhao, Xingke
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 718 : 437 - 448
  • [27] Factors influencing notch toughness of coarse-grained heat affected zone for 9% Ni steel
    Yan C.
    Li W.
    Liu H.
    Bai S.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2010, 46 (18): : 96 - 101
  • [28] Effect of Ti, Al and Mg Addition on the Impact Toughness of Heat Affected Zone in Low Carbon Steel
    Ma, Jianghua
    Zhan, Dongping
    Jiang, Zhouhua
    He, Jicheng
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES II, PTS 1 AND 2, 2009, 79-82 : 143 - 146
  • [29] Effect of Initial Microstructure on the Toughness of Coarse-Grained Heat-Affected Zone in a Microalloyed Steel
    Shi, Minghao
    Di, Man
    Zhang, Jian
    Kannan, Rangasayee
    Li, Jing
    Yuan, Xiaoguang
    Li, Leijun
    MATERIALS, 2021, 14 (16)
  • [30] Effect of Ti, Zr and Mg Addition on the Impact Toughness of Heat Affected Zone in Low Carbon Steel
    Ma, Jianghua
    Zhan, Dongping
    Jiang, Zhouhua
    He, Jicheng
    Yu, Jin
    ADVANCES IN SUPERALLOYS, PTS 1 AND 2, 2011, 146-147 : 1486 - 1490