DermoNet: densely linked convolutional neural network for efficient skin lesion segmentation

被引:0
|
作者
Saleh Baghersalimi
Behzad Bozorgtabar
Philippe Schmid-Saugeon
Hazım Kemal Ekenel
Jean-Philippe Thiran
机构
[1] École Polytechnique Fédérale de Lausanne (EPFL),Electrical Engineering Department, Signal Processing Laboratory (LTS5)
[2] DermoSafe SA,undefined
[3] EPFL Innovation Park,undefined
[4] Department of Computer Engineering,undefined
关键词
Fully convolutional neural networks; Lesion segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
Recent state-of-the-art methods for skin lesion segmentation are based on convolutional neural networks (CNNs). Even though these CNN-based segmentation approaches are accurate, they are computationally expensive. In this paper, we address this problem and propose an efficient fully convolutional neural network, named DermoNet. In DermoNet, due to our densely connected convolutional blocks and skip connections, network layers can reuse information from their preceding layers and ensure high accuracy in later network layers. By doing so, we take advantage of the capability of high-level feature representations learned at intermediate layers with varying scales and resolutions for lesion segmentation. Quantitative evaluation is conducted on three well-established public benchmark datasets: the ISBI 2016, ISBI 2017, and the PH2 datasets. The experimental results show that our proposed approach outperforms the state-of-the-art algorithms on these three datasets. We also compared the runtime performance of DermoNet with two other related architectures, which are fully convolutional networks and U-Net. The proposed approach is found to be faster and suitable for practical applications.
引用
收藏
相关论文
共 50 条
  • [11] Rema-Net: An efficient multi-attention convolutional neural network for rapid skin lesion segmentation
    Yang, Litao
    Fan, Chao
    Lin, Hao
    Qiu, Yingying
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 159
  • [12] Convolutional Neural Networks Applied for Skin Lesion Segmentation
    Araujo, Graziela Silva
    Camara-Chavez, Guillermo
    Oliveira, Roberta B.
    2021 XLVII LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2021), 2021,
  • [13] Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network
    Jiang, Yun
    Cao, Simin
    Tao, Shengxin
    Zhang, Hai
    IEEE ACCESS, 2020, 8 : 122811 - 122825
  • [14] Architecture of an effective convolutional deep neural network for segmentation of skin lesion in dermoscopic images
    Arora, Ginni
    Dubey, Ashwani Kumar
    Jaffery, Zainul Abdin
    Rocha, Alvaro
    EXPERT SYSTEMS, 2023, 40 (06)
  • [15] Boundary-aware convolutional neural network for skin lesion segmentation in clinical images
    Wang, Y.
    Jin, Z.
    Zhao, S.
    Chen, X.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2021, 141 (05) : S63 - S63
  • [16] DEEP AUTO-CONTEXT FULLY CONVOLUTIONAL NEURAL NETWORK FOR SKIN LESION SEGMENTATION
    Mirikharaji, Zahra
    Izadi, Saeed
    Kawahara, Jeremy
    Hamarneh, Ghassan
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 877 - 880
  • [17] Multipath Densely Connected Convolutional Neural Network for Brain Tumor Segmentation
    Liu, Cong
    Si, Weixin
    Qian, Yinling
    Liao, Xiangyun
    Wang, Qiong
    Guo, Yong
    Heng, Pheng-Ann
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 81 - 91
  • [18] A Convolutional Neural Network for Skin Lesion Segmentation Using Double U-Net Architecture
    Abid, Iqra
    Almakdi, Sultan
    Rahman, Hameedur
    Almulihi, Ahmed
    Alqahtani, Ali
    Rajab, Khairan
    Alqhatani, Abdulmajeed
    Shaikh, Asadullah
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (03): : 1407 - 1421
  • [19] Automated skin lesion segmentation using attention-based deep convolutional neural network
    Arora, Ridhi
    Raman, Balasubramanian
    Nayyar, Kritagya
    Awasthi, Ruchi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 65
  • [20] mCA-Net: modified comprehensive attention convolutional neural network for skin lesion segmentation
    Yu, Bin
    Yu, Long
    Tian, Shengwei
    Wu, Weidong
    Zhang, Dezhi
    Kang, Xiaojing
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2022, 10 (01): : 85 - 95