Asymptotic properties of parallel Bayesian kernel density estimators

被引:0
|
作者
Alexey Miroshnikov
Evgeny Savelev
机构
[1] University of California,Department of Mathematics
[2] Virginia Polytechnic Institute and State University,Department of Mathematics
关键词
Density estimation; Asymptotic properties; Parametric optimization; Parallel algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we perform an asymptotic analysis of Bayesian parallel kernel density estimators introduced by Neiswanger et al. (in: Proceedings of the thirtieth conference on uncertainty in artificial intelligence, AUAI Press, pp 623–632, 2014). We derive the asymptotic expansion of the mean integrated squared error for the full data posterior estimator and investigate the properties of asymptotically optimal bandwidth parameters. Our analysis demonstrates that partitioning data into subsets requires a non-trivial choice of bandwidth parameters that optimizes the estimation error.
引用
收藏
页码:771 / 810
页数:39
相关论文
共 50 条