Boundedness of Riesz-Type Potential Operators on Variable Exponent Herz–Morrey Spaces

被引:0
|
作者
J.-L. Wu
机构
[1] Macau,Macau University of Science and Technology
[2] and Mudanjiang Normal University,undefined
来源
Ukrainian Mathematical Journal | 2018年 / 69卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We show the boundedness of the Riesz-type potential operator of variable order β(x) from the variable exponent Herz – Morrey spaces MK̇p1,q1⋅α⋅,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M{\dot{K}}_{p_1,{q}_1\left(\cdot \right)}^{\upalpha \left(\cdot \right),\lambda } $$\end{document} (ℝn) into the weighted space MK̇p2,q2⋅α⋅,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M{\dot{K}}_{p_2,{q}_2\left(\cdot \right)}^{\upalpha \left(\cdot \right),\lambda } $$\end{document} (ℝn,ω) where 𝛼(x) 𝜖 L∞(ℝn) is log-Hölder continuous both at the origin and at infinity, ω = (1 + |x|)−γ(x) with some γ(x) > 0, and1/q1(x) − 1/q2(x) = β(x)/n when q1(x) is not necessarily constant at infinity. It is assumed that the exponent q1(x) satisfies the logarithmic continuity condition both locally and at infinity and, moreover, 1 < (q1)∞ ≤ q1(x) ≤ (q1) +  <  ∞ ,  x∈ ℝn.
引用
收藏
页码:1379 / 1392
页数:13
相关论文
共 50 条
  • [21] Boundedness of Riesz Potential Operator on Grand Herz-Morrey Spaces
    Sultan, Babar
    Azmi, Fatima
    Sultan, Mehvish
    Mehmood, Mazhar
    Mlaiki, Nabil
    AXIOMS, 2022, 11 (11)
  • [22] BOUNDEDNESS OF MAXIMAL OPERATORS ON HERZ SPACES WITH RADIAL VARIABLE EXPONENT
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    TOHOKU MATHEMATICAL JOURNAL, 2020, 72 (03) : 335 - 348
  • [23] Boundedness of some operators on grand Herz spaces with variable exponent
    Sultan, Mehvish
    Sultan, Babar
    Aloqaily, Ahmad
    Mlaiki, Nabil
    AIMS MATHEMATICS, 2023, 8 (06): : 12964 - 12985
  • [24] Boundedness of Maximal and Singular Operators in Morrey Spaces with Variable Exponent
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    ARMENIAN JOURNAL OF MATHEMATICS, 2008, 1 (01): : 18 - 28
  • [25] BOUNDEDNESS FOR FRACTIONAL HARDY-TYPE OPERATOR ON HERZ-MORREY SPACES WITH VARIABLE EXPONENT
    Wu, Jianglong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) : 423 - 435
  • [26] Boundedness of Marcinkiewicz Integrals in Weighted Variable Exponent Herz-Morrey Spaces
    XIAO DAN
    SHU LI-SHENG
    Ji You-qing
    Communications in Mathematical Research, 2018, 34 (04) : 371 - 382
  • [27] Boundedness for commutators fractional integrals on Herz-Morrey spaces with variable exponent
    Wu, Jianglong
    KYOTO JOURNAL OF MATHEMATICS, 2014, 54 (03) : 483 - 495
  • [28] Multilinear Hausdorff operators on weighted Herz and Morrey-Herz spaces with variable exponent
    Liu, Dongli
    Zhao, Jiman
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (01)
  • [29] A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent
    Bashir, Samia
    Sultan, Babar
    Hussain, Amjad
    Khan, Aziz
    Abdeljawad, Thabet
    AIMS MATHEMATICS, 2023, 8 (09): : 22178 - 22191
  • [30] Boundedness for fractional Hardy-type operator on variable-exponent Herz-Morrey spaces
    Wu, Jiang-Long
    Zhao, Wen-Jiao
    KYOTO JOURNAL OF MATHEMATICS, 2016, 56 (04) : 831 - 845