Exotic Indecomposable Systems of Four Subspaces in a Hilbert Space

被引:0
|
作者
Masatoshi Enomoto
Yasuo Watatani
机构
[1] Koshien University,College of Business Administration and Information Science
[2] Kyushu University,Department of Mathematical Sciences
来源
关键词
46C07; 47A15; 15A21; 16G20; Subspace; Hilbert space; indecomposable system; defect; strongly irreducible operator;
D O I
暂无
中图分类号
学科分类号
摘要
We study the relative position of four (closed) subspaces in a Hilbert space. For any positive integer n, we give an example of exotic indecomposable system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{S}}$$ \end{document} of four subspaces in a Hilbert space whose defect is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{2n+1}{3}$$ \end{document}. By an exotic system, we mean a system which is not isomorphic to any closed operator system under any permutation of subspaces. We construct the examples using certain nice sequences construced by Jiang and Wang in their study of strongly irreducible operators.
引用
收藏
页码:149 / 164
页数:15
相关论文
共 50 条