Global regularity for almost minimizers of nonconvex variational problems

被引:0
|
作者
M. Foss
机构
[1] University of Nebraska-Lincoln,Department of Mathematics
来源
关键词
Regularity; Asymptotic convexity; Almost minimizer; 49N60; 35J50; 35J55;
D O I
暂无
中图分类号
学科分类号
摘要
We prove some global, up to the boundary of a domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb{R}}^{n}$$\end{document} , continuity and Lipschitz regularity results for almost minimizers of functionals of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf {\rm u}} \mapsto \int_{\Omega} g({\bf {\rm x}}, {\bf {\rm u}}({\bf {\rm x}}), \nabla{\bf {\rm u}}({\bf {\rm x}}))\,{\rm d}{\bf x}.$$\end{document}The main assumption for g is that it be asymptotically convex with respect its third argument. For the continuity results, the integrand is allowed to have some discontinuous behavior with respect to its first and second arguments. For the global Lipschitz regularity result, we require g to be Hölder continuous with respect to its first two arguments.
引用
收藏
页码:263 / 321
页数:58
相关论文
共 50 条