Existence of minimizers for nonconvex variational problems with slow growth

被引:12
|
作者
Crasta, G [1 ]
机构
[1] Univ Modena, Dipartimento Matemat Pura & Applicata, I-41100 Modena, Italy
关键词
calculus of variations; nonconvex noncoercive problems; problems with slow growth; existence of minimizers;
D O I
10.1023/A:1021774227314
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Consider the minimization problem (P) min{integral(0)(1)f(t,u'(t)) dt; u is an element of W-1,W-1([0, 1], R-n), u(0) = u(0), u(1) = u(1)}, in which f:[0, 1] x R-n --> R boolean OR {+infinity} is a normal integrand. Define the convex function G: R-n --> R boolean OR {+infinity} by G(p) = integral(0)(1) f*(t,p) dt. It is known that, if the essential domain H of G is open, then problem (P) has a minimizer for any pair of endpoints (u(0), u(1)). In this paper, the same result is proved under the condition that, for every point p in H, the subgradient set partial derivative G(p) is either bounded or empty (when H is open, this condition herds automatically).
引用
收藏
页码:381 / 401
页数:21
相关论文
共 50 条