Estimation algorithm research for lithium battery SOC in electric vehicles based on adaptive unscented Kalman filter

被引:0
|
作者
Bo Li
Shaoyi Bei
机构
[1] Jiangsu University of Technology,School of Vehicle and Traffic Engineering
来源
关键词
State of charge; Peukert equation; AUKF; Electric vehicle;
D O I
暂无
中图分类号
学科分类号
摘要
The state of charge (SOC) is a significant part of energy management for electric vehicle power battery, which has important influence on the safe operation of power battery and the judgment of driver’s operation. Because the battery SOC cannot be measured directly, many researchers use various estimation methods to obtain accurate SOC values. But the SOC is affected by the temperature, current, cycle life and other time-varying nonlinear factors, which make difficult to construct prediction model. The key problem of battery SOC estimation is the change rule of battery capacity. The Peukert equation is a good method for calculating the battery capacity. The traditional Peukert equation without considering the influence of temperature, but the differences of temperature lead to changes in the constants n and K of the Peukert equations. In this paper, the Peukert equation based on temperature, current change and cycle life is established to estimate the battery capacity. And the battery model state equation is established for estimation and measurement equations of charge and discharge parameters Ce,Re,Cd,Rd,R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ {C_{\text{e}} ,R_{\text{e}} ,C_{\text{d}} ,R_{\text{d}} ,R_{0} } \right\} $$\end{document} and VOC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{\text{OC}} $$\end{document} by using the ampere-hour method and the second-order RC model. And the dynamic estimation of charge state of battery is realized by AUKF. The results show that the accuracy of the lithium battery SOC estimation algorithm based on the temperature, current and cycle life of the modified Peukert equation is about 8% higher than that of the traditional KF ampere-hour method.
引用
收藏
页码:8171 / 8183
页数:12
相关论文
共 50 条
  • [21] SOC Estimation with an Adaptive Unscented Kalman Filter Based on Model Parameter Optimization
    Guo, Xiangwei
    Xu, Xiaozhuo
    Geng, Jiahao
    Hua, Xian
    Gao, Yan
    Liu, Zhen
    APPLIED SCIENCES-BASEL, 2019, 9 (19):
  • [22] LiFePO4 Battery Pack Capacity Estimation for Electric Vehicles Based on Unscented Kalman Filter
    Zhao, Lei
    Xu, Guoqing
    Li, Weimin
    Taimoor, Zahid
    Song, Zhibin
    2013 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2013, : 301 - 305
  • [23] Lithium-ion battery SOC estimation based on an improved adaptive extended Kalman filter
    Wang, Yunqiu
    Li, Lei
    Ding, Quansen
    Liu, Jiale
    Chen, Pengwei
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 417 - 421
  • [24] SOC Estimation of Lithium -ion Battery Based on New Adaptive Fading Extended Kalman Filter
    Yang, Yaning
    Cui, Naxin
    Wang, Chunyu
    Liu, Miao
    Gao, Ruizhi
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 5630 - 5634
  • [25] Lithium-ion Battery SOC Estimation Based on Weighted Adaptive Recursive Extended Kalman Filter Joint Algorithm
    Wang, Jianfeng
    Zhang, Zhaozhen
    2020 IEEE 8TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2020, : 11 - 15
  • [26] Joint Estimation of SOC of Lithium Battery Based on Dual Kalman Filter
    Wang, Hao
    Zheng, Yanping
    Yu, Yang
    PROCESSES, 2021, 9 (08)
  • [27] State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter
    Xing, Jie
    Wu, Peng
    SUSTAINABILITY, 2021, 13 (09)
  • [28] Electric vehicle battery SOC estimation based on fuzzy Kalman filter
    Yan, Xiangwu
    Yang, Yang
    Guo, Qi
    Zhang, Hechuan
    Qu, Wei
    2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA), 2013, : 863 - 866
  • [29] Estimation of Li-ion Battery SOC Based on Model Fusion and Adaptive Unscented Kalman Filtering Algorithm
    Liu W.
    Wang L.
    Liao C.
    Wang L.
    Liu, Weilong (zkylwl@foxmail.com), 1600, SAE-China (39): : 997 - 1003
  • [30] A novel adaptive unscented kalman filter algorithm for SOC estimation to reduce the sensitivity of attenuation coefficient
    Zhou, Zhenhu
    Zhan, Mingjing
    Wu, Baigong
    Xu, Guoqi
    Zhang, Xiao
    Cheng, Junjie
    Gao, Ming
    ENERGY, 2024, 307