A coupling algorithm for simulating multiple hydraulic fracture propagation based on extended finite element method

被引:0
|
作者
Xiao-Gang Li
Liang-Ping Yi
Zhao-Zhong Yang
Chang-yin Liu
Ping Yuan
机构
[1] Southwest Petroleum University,State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation
[2] SINOPEC,State Key Laboratory of Shale Oil Gas Accumulation Mechanism and Effective Development
[3] Natural Gas Division of Tarim Oilfield Company,undefined
来源
关键词
Extended finite element method; Hydraulic fracturing; Multiple fracture; Cluster space optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Combining fluid mechanics, fracture mechanics, and extended finite element method, a coupling algorithm for simulating multiple hydraulic fracture propagation is established in this research. In comparison with the current existing XFEM models for hydraulic fracturing, this approach neither needs to introduce leak-off coefficient to describe the fluid leak-off phenomenon, nor requires to predetermine fracture propagation orientation. The single-fracture propagation results obtained from our numerical model and semi-analytical (KGD) solution show similar trends. Based on our numerical model, the effect of cluster space on multiple hydraulic fractures propagate in the horizontal well is discussed. Simulation shows that the stress interference among the fractures decreases with the increase in cluster space, and the average width of fractures increases with an increase in cluster space, the fracture width at the fracture inflection point may have a local minima value, which can lead to proppant screen out; therefore, in fracturing design, designer should use the quartz sand with smaller particle size as the slug to grind fracture. Since bottom and top fracture are interfered by the middle fracture, they are both away from the middle fracture, while middle fracture extends in straight line due to the symmetry of stress interference. At the beginning, the pressure at the fracture entrance increases with increase in injection time, and then the pressure decreases rapidly as the injection time increases.
引用
收藏
相关论文
共 50 条
  • [31] An Adaptive Extended Finite Element Based Crack Propagation Analysis Method
    Xie, Guizhong
    Zhao, Chongmao
    Zhong, Yudong
    Li, Hao
    Liu, Jun
    Du, Wenliao
    Lv, Jiahe
    Wu, Chao
    MECHANIKA, 2024, 30 (01): : 74 - 82
  • [32] Cracking propagation of hardening concrete based on the extended finite element method
    Zhenyang Zhu
    Weimin Chen
    Guoxin Zhang
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32 : 1132 - 1139
  • [33] Cracking Propagation of Hardening Concrete Based on the Extended Finite Element Method
    朱振泱
    CHEN Weimin
    ZHANG Guoxin
    Journal of Wuhan University of Technology(Materials Science), 2017, 32 (05) : 1132 - 1139
  • [34] A coupling extended multiscale finite element and peridynamic method for modeling of crack propagation in solids
    Hongwu Zhang
    Hui Li
    Hongfei Ye
    Yonggang Zheng
    Yixiong Zhang
    Acta Mechanica, 2019, 230 : 3667 - 3692
  • [35] A coupling extended multiscale finite element and peridynamic method for modeling of crack propagation in solids
    Zhang, Hongwu
    Li, Hui
    Ye, Hongfei
    Zheng, Yonggang
    Zhang, Yixiong
    ACTA MECHANICA, 2019, 230 (10) : 3667 - 3692
  • [36] A fluid-solid coupling model for hydraulic fracture of deep coal seam based on finite element method
    Zhang, Dongxu
    Wu, Chengxi
    Shi, Zejin
    Li, Yaqi
    Zhao, Yulong
    Wu, Xudong
    PHYSICS OF FLUIDS, 2024, 36 (06)
  • [37] A generalized finite element method for three-dimensional hydraulic fracture propagation: Comparison with experiments
    Shauer, Nathan
    Duarte, C. Armando
    ENGINEERING FRACTURE MECHANICS, 2020, 235
  • [38] A multiscale extended finite element method for crack propagation
    Guidault, P. -A.
    Allix, O.
    Champaney, L.
    Cornuault, C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (05) : 381 - 399
  • [39] Application of the Extended Finite Element Method in Crack Propagation
    Di Y.
    Wang H.
    Dong L.
    Xing Z.
    Wang X.
    1600, Cailiao Daobaoshe/ Materials Review (31): : 70 - 74and85
  • [40] Extended Voronoi cell finite element method for multiple crack propagation in brittle materials
    Li, Huan
    Guo, Ran
    Cheng, Heming
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 109