Error Analysis of Nonlinear Time Fractional Mobile/Immobile Advection-Diffusion Equation with Weakly Singular Solutions

被引:0
|
作者
Hui Zhang
Xiaoyun Jiang
Fawang Liu
机构
[1] Shandong University Jinan,School of Mathematics
[2] Shandong University,School of Mathematics
[3] Queensland University of Technology (QUT),School of Mathematical Sciences
关键词
Primary 26A33; Secondary 65M06; 65M12; 65M15; 65M70; 35R11; two-dimensional nonlinear time fractional mobile/immobile advection-dispersion equation; correction method; stability and convergence analysis; fast method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a weighted and shifted Grünwald-Letnikov difference (WSGD) Legendre spectral method is proposed to solve the two-dimensional nonlinear time fractional mobile/immobile advection-dispersion equation. We introduce the correction method to deal with the singularity in time, and the stability and convergence analysis are proven. In the numerical implementation, a fast method is applied based on a globally uniform approximation of the trapezoidal rule for the integral on the real line to decrease the memory requirement and computational cost. The memory requirement and computational cost are O(Q) and O(QK), respectively, where K is the number of the final time step and Q is the number of quadrature points used in the trapezoidal rule. Some numerical experiments are given to confirm our theoretical analysis and the effectiveness of the presented methods.
引用
收藏
页码:202 / 224
页数:22
相关论文
共 50 条
  • [21] A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile immobile advection-diffusion equations
    Chen, Chuanjun
    Liu, Huan
    Zheng, Xiangcheng
    Wang, Hong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (09) : 2771 - 2783
  • [22] Meshfree methods for the nonlinear variable-order fractional advection-diffusion equation
    Ju, Yuejuan
    Liu, Zhiyong
    Yang, Jiye
    Xu, Qiuyan
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 156 : 126 - 143
  • [23] ASYMPTOTIC SOLUTION OF A NONLINEAR ADVECTION-DIFFUSION EQUATION
    De Loubens, R.
    Ramakrishnan, T. S.
    QUARTERLY OF APPLIED MATHEMATICS, 2011, 69 (02) : 389 - 401
  • [24] Numerical solutions of space-fractional advection-diffusion equation with a source term
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [25] A numerical method for distributed order time fractional diffusion equation with weakly singular solutions
    Ren, Jincheng
    Chen, Hu
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 159 - 165
  • [26] Application and analysis of spline approximation for time fractional mobile-immobile advection-dispersion equation
    Kanth, A. S. V. Ravi
    Deepika, Sirswal
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1799 - 1819
  • [27] Stability of a time fractional advection-diffusion system
    Arfaoui, Hassen
    Ben Makhlouf, Abdellatif
    CHAOS SOLITONS & FRACTALS, 2022, 157
  • [28] Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations
    Xu, Yufeng
    Agrawal, Om P.
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1178 - 1193
  • [29] Numerical Method for Fractional Advection-Diffusion Equation with Heredity
    Pimenov V.G.
    Journal of Mathematical Sciences, 2018, 230 (5) : 737 - 741
  • [30] Lattice Boltzmann method for the fractional advection-diffusion equation
    Zhou, J. G.
    Haygarth, P. M.
    Withers, P. J. A.
    Macleod, C. J. A.
    Falloon, P. D.
    Beven, K. J.
    Ockenden, M. C.
    Forber, K. J.
    Hollaway, M. J.
    Evans, R.
    Collins, A. L.
    Hiscock, K. M.
    Wearing, C.
    Kahana, R.
    Velez, M. L. Villamizar
    PHYSICAL REVIEW E, 2016, 93 (04)