A class of logarithmically completely monotonic functions related to the q-gamma function and applications

被引:0
|
作者
Khaled Mehrez
机构
[1] University of Kairouan,Département de Mathématiques ISSAT Kasserine
来源
Positivity | 2017年 / 21卷
关键词
Completely monotonic functions; Logarithmically completely monotonic functions; -gamma function; Stirling’s formula; Inequalities; 33D05; 26D07; 26A48;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the logarithmically complete monotonicity property for a functions involving q-gamma function is investigated for q∈(0,1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (0,1).$$\end{document} As applications of this results, some new inequalities for the q-gamma function are established. Furthermore, let the sequence rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_n$$\end{document} be defined by n!=2πn(n/e)nern\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n!=\sqrt{2\pi n}(n/e)^n e^{r_n}$$\end{document}. We establish new estimates for Stirling’s formula remainder rn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_n.$$\end{document}
引用
收藏
页码:495 / 507
页数:12
相关论文
共 50 条
  • [21] SOME CLASSES OF COMPLETELY MONOTONIC FUNCTIONS RELATED TO q-GAMMA AND q-DIGAMMA FUNCTIONS
    Salem, Ahmed
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (03): : 853 - 862
  • [22] Logarithmically completely monotonic functions relating to the gamma function
    Chen, Chao-Ping
    Qi, Feng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (01) : 405 - 411
  • [23] A class of logarithmically completely monotonic functions
    Guo, Senlin
    Srivastava, H. M.
    APPLIED MATHEMATICS LETTERS, 2008, 21 (11) : 1134 - 1141
  • [24] Two logarithmically completely monotonic functions connected with gamma function
    Qi, Feng
    Yang, Qiao
    Li, Wei
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2006, 17 (07) : 539 - 542
  • [25] LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS INVOLVING GENERALIZED GAMMA AND q- GAMMA FUNCTIONS
    Krasniqi, Valmir
    Guo, Senlin
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2010, 1 (02): : 8 - 16
  • [26] A LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTION INVOLVING THE RATIO OF GAMMA FUNCTIONS
    Qi, Feng
    Li, Wen-Hui
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (04): : 626 - 634
  • [27] Four logarithmically completely monotonic functions involving gamma function
    Qi, Feng
    Niu, Da-Wei
    Cao, Jian
    Chen, Shou-Xin
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) : 559 - 573
  • [28] LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS INVOLVING THE GENERALIZED GAMMA FUNCTION
    Krasniqi, Valmir
    Merovci, Faton
    MATEMATICHE, 2010, 65 (02): : 15 - 23
  • [29] Logarithmically completely monotonic functions and applications
    Guo, Senlin
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 : 169 - 176
  • [30] SOME COMPLETELY MONOTONIC FUNCTIONS ASSOCIATED WITH THE q-GAMMA AND THE q-POLYGAMMA FUNCTIONS
    Salem, Ahmed
    Kamel, Eid S.
    ACTA MATHEMATICA SCIENTIA, 2015, 35 (05) : 1214 - 1224