A class of logarithmically completely monotonic functions related to the q-gamma function and applications

被引:0
|
作者
Khaled Mehrez
机构
[1] University of Kairouan,Département de Mathématiques ISSAT Kasserine
来源
Positivity | 2017年 / 21卷
关键词
Completely monotonic functions; Logarithmically completely monotonic functions; -gamma function; Stirling’s formula; Inequalities; 33D05; 26D07; 26A48;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the logarithmically complete monotonicity property for a functions involving q-gamma function is investigated for q∈(0,1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (0,1).$$\end{document} As applications of this results, some new inequalities for the q-gamma function are established. Furthermore, let the sequence rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_n$$\end{document} be defined by n!=2πn(n/e)nern\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n!=\sqrt{2\pi n}(n/e)^n e^{r_n}$$\end{document}. We establish new estimates for Stirling’s formula remainder rn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_n.$$\end{document}
引用
收藏
页码:495 / 507
页数:12
相关论文
共 50 条