A New GAN-Based Approach to Data Augmentation and Image Segmentation for Crack Detection in Thermal Imaging Tests

被引:0
|
作者
Lulu Tian
Zidong Wang
Weibo Liu
Yuhua Cheng
Fuad E. Alsaadi
Xiaohui Liu
机构
[1] University of Electronic Science and Technology of China,School of Automation Engineering
[2] Brunel University London,Department of Computer Science
[3] King Abdulaziz University,Department of Electrical and Computer Engineering, Faculty of Engineering
来源
Cognitive Computation | 2021年 / 13卷
关键词
Generative adversarial network; Thermal imaging test; Nondestructive testing; Crack detection; Principal component analysis;
D O I
暂无
中图分类号
学科分类号
摘要
As a popular nondestructive testing (NDT) technique, thermal imaging test demonstrates competitive performance in crack detection, especially for detecting subsurface cracks. In thermal imaging test, the temperature of the crack area is higher than that of the non-crack area during the NDT process. By extracting the features of the thermal image sequences, the temperature curve of each spatial point is employed for crack detection. Nevertheless, the quality of thermal images is influenced by the noises due to the complex thermal environment in NDT. In this paper, a modified generative adversarial network (GAN) is employed to improve the image segmentation performance. To improve the feature extraction ability and alleviate the influence of noises, a penalty term is put forward in the loss function of the conventional GAN. A data preprocessing method is developed where the principle component analysis algorithm is adopted for feature extraction. The data argumentation technique is utilized to guarantee the quantity of the training samples. To validate its effectiveness in thermal imaging NDT, the modified GAN is applied to detect the cracks on the eddy current pulsed thermography NDT dataset.
引用
收藏
页码:1263 / 1273
页数:10
相关论文
共 50 条
  • [31] RESOLVING INTRA-CLASS IMBALANCE FOR GAN-BASED IMAGE AUGMENTATION
    Huang, Lijyun
    Lin, Kate Ching-Ju
    Tseng, Yu-Chee
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 970 - 975
  • [32] GAN-based Intrusion Detection Data Enhancement
    Fu, Wei
    Qian, Liping
    Zhu, Xiaohui
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2739 - 2744
  • [33] Lychee Surface Defect Detection Based on Deep Convolutional Neural Networks with GAN-Based Data Augmentation
    Wang, Chenglong
    Xiao, Zhifeng
    AGRONOMY-BASEL, 2021, 11 (08):
  • [34] Evaluating GAN-Based Image Augmentation for Threat Detection in Large-Scale Xray Security Images
    Dumagpi, Joanna Kazzandra
    Jeong, Yong-Jin
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 21
  • [35] GAN-BASED SYNTHETIC MEDICAL IMAGE AUGMENTATION FOR CLASS IMBALANCED DERMOSCOPIC IMAGE ANALYSIS
    Alshardan, Amal
    Alahmari, Saad
    Alghamdi, Mohammed
    AL Sadig, Mutasim
    Mohamed, Abdullah
    Mohammed, Gouse Pasha
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
  • [36] GAN-Based Data Augmentation Technique for Various Transmission Line Fault Data
    Lee, Kyeong-Yeong
    Lim, Se-Heon
    Kim, Tae-Geun
    Song, Kyung-Min
    Yoon, Sung-Guk
    Transactions of the Korean Institute of Electrical Engineers, 2024, 73 (08): : 1318 - 1326
  • [37] LEGAN: Addressing Intraclass Imbalance in GAN-Based Medical Image Augmentation for Improved Imbalanced Data Classification
    Ding, Hongwei
    Huang, Nana
    Wu, Yaoxin
    Cui, Xiaohui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [38] An improved GAN-based data augmentation model for addressing data scarcity in SRMs
    Yang, Huixin
    Xiang, Zijian
    Li, Xiang
    Zhang, Wei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (02)
  • [39] A new data augmentation method based on local image warping for medical image segmentation
    Liu, Hong
    Cao, Haichao
    Song, Enmin
    Ma, Guangzhi
    Xu, Xiangyang
    Jin, Renchao
    Liu, Tengying
    Liu, Lei
    Liu, Daiyang
    Hung, Chih-Cheng
    MEDICAL PHYSICS, 2021, 48 (04) : 1685 - 1696
  • [40] Privacy preservation for image data: A GAN-based method
    Chen, Zhenfei
    Zhu, Tianqing
    Xiong, Ping
    Wang, Chenguang
    Ren, Wei
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (04) : 1668 - 1685