On the Oscillation of Partial Difference Equations Generated by Deviating Arguments

被引:0
|
作者
Patricia J. Y. Wong
R. P. Agarwal
机构
[1] Nanyang Technological University 469,Division of Mathematics
[2] National University of Singapore 10,Department of Mathematics
来源
关键词
Difference Equation; Partial Difference; Partial Difference Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We offer sufficient conditions for the oscillation of all solutions of the partial difference equations y(m - 1,n) + β(m,n)y(m, n - 1) -δ(m,n)+ P(m,n,y(m + k,n + l)) = Q(m,n,y(m + k,n + l)) and (y(m - 1,n)+ β(m,n)y(m,n - 1) - δ(m,n)y(m,n) +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop \Sigma \limits_{i = 1}^\tau $$ \end{document} Pi(m,ny(m + ki,n + li)) =\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathop \Sigma \limits_{i = 1}^\tau $$ \end{document} Qi(m,n,y9m + ki,n + li)).
引用
收藏
页码:1 / 29
页数:28
相关论文
共 50 条