We offer sufficient conditions for the oscillation of all solutions of the partial difference equations y(m - 1,n) + β(m,n)y(m, n - 1) -δ(m,n)+ P(m,n,y(m + k,n + l)) = Q(m,n,y(m + k,n + l)) and (y(m - 1,n)+ β(m,n)y(m,n - 1) - δ(m,n)y(m,n) +\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathop \Sigma \limits_{i = 1}^\tau $$
\end{document} Pi(m,ny(m + ki,n + li)) =\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathop \Sigma \limits_{i = 1}^\tau $$
\end{document} Qi(m,n,y9m + ki,n + li)).