Frobenius Extensions and Tilting Complexes

被引:0
|
作者
Hiroki Abe
Mitsuo Hoshino
机构
[1] University of Tsukuba,Institute of Mathematics
来源
关键词
Frobenius extension; Tilting complex; Derived equivalence; Primary 16S99; Secondary 18E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let n ≥ 1 be an integer and π a permutation of I = {1, ⋯ ,n}. For any ring R, we provide a systematic construction of rings A which contain R as a subring and enjoy the following properties: (a) 1 = ∑ i ∈ Iei with the ei orthogonal idempotents; (b) eix = xei for all i ∈ I and x ∈ R; (c) eiAej ≠ 0 for all i, j ∈ I; (d) eiAA ≇ ejAA unless i = j; (e) every eiAei is a local ring whenever R is; (f) eiAA ≅ HomR(Aeπ(i),RR) and AAeπ(i) ≅ AHomR(eiA,RR) for all i ∈ I; and (g) there exists a ring automorphism η ∈ Aut(A) such that η(ei) = eπ(i) for all i ∈ I. Furthermore, for any nonempty π-stable subset J of I, the mapping cone of the multiplication map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bigoplus_{i \in J} Ae_{i} \otimes_{R} e_{i}A_{A} \to A_{A}$\end{document} is a tilting complex.
引用
收藏
页码:215 / 232
页数:17
相关论文
共 50 条
  • [1] Frobenius extensions and tilting complexes
    Abe, Hiroki
    Hoshino, Mitsuo
    ALGEBRAS AND REPRESENTATION THEORY, 2008, 11 (03) : 215 - 232
  • [2] Generalized tilting modules and Frobenius extensions
    Fu, Dongxing
    Xu, Xiaowei
    Zhao, Zhibing
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (09): : 3337 - 3350
  • [3] Extensions of rings and tilting complexes
    Miyachi, J
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 105 (02) : 183 - 194
  • [4] Homological invariants of unbounded complexes under Frobenius extensions
    Wu, Dejun
    Wang, Yongduo
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (03) : 1298 - 1307
  • [5] On dihedral extensions and frobenius extensions
    Imaoka, M
    Kishi, Y
    GALOIS THEORY AND MODULAR FORMS, 2004, 11 : 195 - 220
  • [6] Frobenius extensions of corings
    Iovanov, Miodrag Cristian
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (03) : 869 - 892
  • [7] Are biseparable extensions Frobenius?
    Caenepeel, S
    Kadison, L
    K-THEORY, 2001, 24 (04): : 361 - 383
  • [8] On cubes of Frobenius extensions
    Elias, Ben
    Snyder, Noah
    Williamson, Geordie
    REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 171 - 186
  • [9] Extensions for Frobenius kernels
    Bendel, CP
    Nakano, DK
    Pillen, C
    JOURNAL OF ALGEBRA, 2004, 272 (02) : 476 - 511
  • [10] ARITHMETIC IN FROBENIUS EXTENSIONS
    STECKEL, HD
    MANUSCRIPTA MATHEMATICA, 1982, 39 (2-3) : 359 - 385