Generic replica symmetric field-theory for short range Ising spin glasses

被引:0
|
作者
T. Temesvári
C. De Dominicis
I.R. Pimentel
机构
[1] HAS Research Group for Theoretical Physics,
[2] Eötvös University,undefined
[3] 1117 Pázmány Péter sétány 1/A,undefined
[4] Budapest,undefined
[5] Hungary,undefined
[6] Service de Physique Théorique,undefined
[7] CEA Saclay,undefined
[8] 91191 Gif-sur-Yvette,undefined
[9] France,undefined
[10] Department of Physics and CFMC,undefined
[11] University of Lisbon,undefined
[12] 1649 Lisboa,undefined
[13] Portugal,undefined
关键词
PACS. 75.10.Nr Spin-glass and other random models – 05.70.Jk Critical point phenomena;
D O I
暂无
中图分类号
学科分类号
摘要
Symmetry considerations and a direct, Hubbard-Stratonovich type, derivation are used to construct a replica field-theory relevant to the study of the spin glass transition of short range models in a magnetic field. A mean-field treatment reveals that two different types of transitions exist, whenever the replica number n is kept larger than zero. The Sherrington-Kirkpatrick critical point in zero magnetic field between the paramagnet and replica magnet (a replica symmetric phase with a nonzero spin glass order parameter) separates from the de Almeida-Thouless line, along which replica symmetry breaking occurs. We argue that for studying the de Almeida-Thouless transition around the upper critical dimension d = 6, it is necessary to use the generic cubic model with all the three bare masses and eight cubic couplings. The critical role n may play is also emphasized. To make perturbative calculations feasible, a new representation of the cubic interaction is introduced. To illustrate the method, we compute the masses in one-loop order. Some technical details and a list of vertex rules are presented to help future renormalisation-group calculations.
引用
收藏
页码:361 / 372
页数:11
相关论文
共 50 条
  • [21] REPLICA FIELD-THEORY FOR RANDOM MANIFOLDS
    MEZARD, M
    PARISI, G
    JOURNAL DE PHYSIQUE I, 1991, 1 (06): : 809 - 836
  • [22] REPLICA FIELD-THEORY FOR COMPOSITE MEDIA
    BARTHELEMY, M
    ORLAND, H
    JOURNAL DE PHYSIQUE I, 1993, 3 (11): : 2171 - 2177
  • [23] REPLICA FIELD-THEORY FOR COMPOSITE MEDIA
    BARTHELEMY, M
    ORLAND, H
    PHYSICA A, 1994, 207 (1-3): : 106 - 109
  • [24] ORDERED PHASE OF SHORT-RANGE ISING SPIN-GLASSES
    FISHER, DS
    HUSE, DA
    PHYSICAL REVIEW LETTERS, 1986, 56 (15) : 1601 - 1604
  • [25] Short-range Ising spin glasses: a critical exponent study
    Nogueira, E
    Coutinho, S
    Nobre, FD
    Curado, EMF
    PHYSICA A, 1998, 257 (1-4): : 365 - 370
  • [26] EXCITATION MORPHOLOGY OF SHORT-RANGE ISING SPIN-GLASSES
    SIBANI, P
    ANDERSSON, JO
    PHYSICA A, 1994, 206 (1-2): : 1 - 12
  • [27] Reflection symmetry in mean-field replica-symmetric spin glasses
    Gribova, NV
    Ryzhov, VN
    Schelkacheva, TI
    Tareyeva, EE
    PHYSICS LETTERS A, 2003, 315 (06) : 467 - 473
  • [28] Replica theory for Levy spin glasses
    Janzen, K.
    Hartmann, A. K.
    Engel, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [29] Proof of Single-Replica Equivalence in Short-Range Spin Glasses
    Newman, C. M.
    Read, N.
    Stein, D. L.
    PHYSICAL REVIEW LETTERS, 2023, 130 (07)
  • [30] PROPERTIES OF SOMPOLINSKY MEAN FIELD-THEORY OF SPIN-GLASSES
    SOMMERS, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (02): : 447 - 454