Sports video athlete detection based on deep learning

被引:0
|
作者
Hao Ren
机构
[1] Xinxiang Medical University,Department of Sports
来源
关键词
Deep learning; Sports video athlete detection technology; Time-sharing memory algorithm; Deep selection network; Feature extraction and enhancement algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The deep fusion of sports and machine vision has become a research hot spot in sports video target detection, athlete state recovery and sports promotion. On the basis of in-depth study, it can detect a large number of sports videos, complete the drawing and analysis of human body detection model, and detect and evaluate the posture of corresponding athletes in the video, which can save a lot of costs and maximize the more professional training of athletes. In order to solve the above problems, this paper innovatively completes the automatic language description of sports video based on time-sharing memory algorithm. Its principle is to realize the accurate decomposition of athletes' sports data through the mapping relationship between the corresponding letter sequence and video sequence in time-sharing memory. In order to capture the key posture of athletes' sports video, this paper innovatively proposes an object extraction algorithm based on athletes' skeleton motion enhancement. In practical application, based on the key pose capture, it is necessary to train the depth selection network in time to extract the key pose of the skeleton. Based on this network, it can enhance the key posture of bone information and accurately express its related features. After extracting the actual athlete's bone information, we need to fine-tune the training network to realize the accurate recognition of key features. Based on the above key algorithms, this paper designs a sports video athlete detection system based on deep learning and makes an experimental research on the related sports video. The experimental results show that the detection accuracy of athletes' sports video is improved by nearly 10% compared with the traditional convolution network recognition algorithm, so the algorithm has obvious advantages in recognition accuracy.
引用
收藏
页码:4201 / 4210
页数:9
相关论文
共 50 条
  • [21] Retraction Note: Video Face Detection Based on Deep Learning
    Weiwei Liu
    Wireless Personal Communications, 2023, 128 : 1497 - 1497
  • [22] RETRACTED ARTICLE: Video Face Detection Based on Deep Learning
    Weiwei Liu
    Wireless Personal Communications, 2018, 102 : 2853 - 2868
  • [23] Video-Based Stress Detection through Deep Learning
    Zhang, Huijun
    Feng, Ling
    Li, Ningyun
    Jin, Zhanyu
    Cao, Lei
    SENSORS, 2020, 20 (19) : 1 - 17
  • [24] Research on Video Abnormal Behavior Detection Based on Deep Learning
    Peng Jiali
    Zhao Yingliang
    Wang Liming
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (06)
  • [25] Deep Learning based Moving Object Detection for Video Surveillance
    Huang, Han-Yi
    Lin, Chih-Yang
    Lin, Wei-Yang
    Lee, Chien-Cheng
    Chang, Chuan-Yu
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [26] Review of Deep Learning-Based Video Anomaly Detection
    Ji G.
    Qi X.
    Wang J.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2024, 37 (02): : 128 - 143
  • [27] Video Anomaly Detection Using Optimization Based Deep Learning
    Gayal, Baliram Sambhaji
    Patil, Sandip Raosaheb
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 249 - 264
  • [28] Football Players' Shooting Posture Norm Based on Deep Learning in Sports Event Video
    Huang, Guangliang
    Lan, Zhuangxu
    Huang, Guo
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [29] Sports video key pose data incremental mining algorithm based on deep learning
    Zhang, Libo
    Journal of Computers (Taiwan), 2021, 32 (02) : 187 - 196
  • [30] Deep learning for object detection in video
    Lu, Shengyu
    2018 INTERNATIONAL SEMINAR ON COMPUTER SCIENCE AND ENGINEERING TECHNOLOGY (SCSET 2018), 2019, 1176