The Impact of Surface Temperature Heterogeneity on Near-Surface Heat Transport

被引:0
|
作者
Travis Morrison
Marc Calaf
Chad W. Higgins
Stephen A. Drake
Alexei Perelet
Eric Pardyjak
机构
[1] University of Utah,Department of Mechanical Engineering
[2] Oregon State University,College of Agricultural Sciences
[3] University of Nevada,Department of Physics
来源
Boundary-Layer Meteorology | 2021年 / 180卷
关键词
Advection; Convective boundary layer; IPAQS campaign; Surface energy balance; Temperature tendency;
D O I
暂无
中图分类号
学科分类号
摘要
Experimental closure of the surface energy balance during convective periods is a long-standing problem. With experimental data from the Idealized horizontal Planar Array experiment for Quantifying Surface heterogeneity, the terms of the temperature-tendency equation are computed, with an emphasis on the total derivative. The experiment occurred at the Surface Layer Turbulence and Environmental Science Test facility at the U.S. Army Dugway Proving Ground during the summer of 2019. The experimental layout contained an array of 21 flux stations over a 1 km2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document} grid. Sensible heat fluxes show high spatial variability, with maximum variability occurring during convective periods. Maximum variability in the vertical heat flux is 50–80 W m-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-2}$$\end{document} (median variability of 40%), while in the horizontal flux, it is 200–500 W m-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-2}$$\end{document} (median variability of 48% for the streamwise and 40% for the spanwise fluxes). Ensemble averages computed during convective afternoon periods show large magnitudes of horizontal advection (48 W m-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document} or 172 K h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}) and vertical flux divergence (13 W m-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document} or 47 K h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}). Probability density functions of the total derivative from convective cases show mean volumetric heating rates of 43 W m-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document} (154 K h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}) compared to 13 W m-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document} (47 K h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}) on non-convective days. A conceptual model based on persistent mean flow structures from local-surface-temperature heterogeneities may explain the observed advection. The model describes the difference between locally-driven advection and advection driven by larger-scale forcings. Of the cases examined, 83% with streamwise and 81% with spanwise advection during unstable periods are classified as locally driven by nearby surface thermal heterogeneities.
引用
收藏
页码:247 / 272
页数:25
相关论文
共 50 条
  • [21] RADIONUCLIDE TRANSPORT ABOVE A NEAR-SURFACE WATER-TABLE .1. AN AUTOMATED LYSIMETER FACILITY FOR NEAR-SURFACE CONTAMINANT TRANSPORT STUDIES
    BURNE, S
    WHEATER, HS
    BUTLER, AP
    JOHNSTON, PM
    WADEY, P
    SHAW, G
    BELL, JNB
    [J]. JOURNAL OF ENVIRONMENTAL QUALITY, 1994, 23 (06) : 1318 - 1329
  • [22] ON THE TOPOGRAPHIC CORRECTION OF NEAR-SURFACE HEAT-FLOW
    HUANG, SP
    XIONG, LP
    [J]. SCIENTIA GEOLOGICA SINICA, 1987, (02): : 174 - 182
  • [23] SURFACE AND NEAR-SURFACE COMPOSITION OF NICALON
    BRENNAN, JJ
    [J]. AMERICAN CERAMIC SOCIETY BULLETIN, 1984, 63 (08): : 997 - 997
  • [24] Variational method for estimating near-surface soil moisture and surface heat fluxes
    Zhang Shuwen
    Zhang Weidong
    Qiu Chongjian
    [J]. ACTA METEOROLOGICA SINICA, 2007, 21 (04): : 476 - 486
  • [25] A Variational Method for Estimating Near-Surface Soil Moisture and Surface Heat Fluxes
    张述文
    张卫东
    邱崇践
    [J]. Journal of Meteorological Research, 2007, (04) : 476 - 486
  • [26] NEAR-SURFACE SAMPLER
    MCCLEARY, JD
    [J]. PROGRESSIVE FISH-CULTURIST, 1974, 36 (04): : 233 - 233
  • [27] NEAR-SURFACE GEOCHEMISTRY
    MCIVER, RD
    [J]. OIL & GAS JOURNAL, 1983, 81 (41) : 29 - 30
  • [28] NEAR-SURFACE MODEL
    不详
    [J]. NATURE, 1973, 246 (5430) : 192 - 192
  • [29] Measurement of net ocean surface heat flux, solar irradiance and near-surface temperature using a novel surface contact lagrangian buoy
    Boyle, J. P.
    Herman, Michael
    DePasqua, J. D.
    [J]. OCEANS 2006, VOLS 1-4, 2006, : 1545 - 1550
  • [30] Near-surface temperature gradient in a coastal upwelling regime
    Maske, H.
    Ochoa, J.
    Almeda-Jauregui, C. O.
    Ruiz-de la Torre, M. C.
    Cruz-Lopez, R.
    Villegas-Mendoza, J. R.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (08) : 4972 - 4982